Home
Class 11
MATHS
Let I1=int0^(pi/2)e^(-x^(2))sin(x)d x ; ...

Let `I_1=int_0^(pi/2)e^(-x^(2))sin(x)d x ; I_2=int_0^(pi/2)e^(-x^(2))d x ; I_3=int_0^(pi/2)e^(-x^2)(1+x)dx` and consider the statements `(1) I_1 < I_2 (2) I_2 < I_3 (3) I_1 = I_3` Which of the following is(are) true?

Promotional Banner

Similar Questions

Explore conceptually related problems

Let I_(1)=int_(0)^(pi//4)e^(x^(2))dx, I_(2) = int_(0)^(pi//4) e^(x)dx, I_(3) = int_(0)^(pi//4)e^(x^(2)).sin x dx , then :

Let I_(1)=int_(0)^(pi//4)e^(x^(2))dx, I_(2) = int_(0)^(pi//4) e^(x)dx, I_(3) = int_(0)^(pi//4)e^(x^(2)).cos x dx , then :

int_0^(2pi) e^(x/2) sin (x/2+pi/4) dx =

I=int_0^(2pi) e^(sin^2x+sinx+1)dx then

Suppose I_1=int_0^(pi/2)cos(pisin^2x)dx and I_2=int_0^(pi/2)cos(2pisin^2x)dx and I_3=int_0^(pi/2) cos(pi sinx)dx , then

Suppose I_1=int_0^(pi/2)cos(pisin^2x)dx and I_2=int_0^(pi/2)cos(2pisin^2x)dx and I_3=int_0^(pi/2) cos(pi sinx)dx , then

int_0^(pi//2) cos x e^(sin x) dx is :

Let I=int_(0)^((pi)/(2))((sin x)/(x))dx, then

I=int_(0)^(2 pi)e^(sin^(2)x+sin x+1)dx then

If I_1=int_0^1 2^(x^2)dx , I_2=int_0^1 2^(x^3) dx , I_3= int_1^2 2^(x^2) dx , I_4=int_1^2 2^(x^3)dx then