Home
Class 12
PHYSICS
A pendulum of length 1 m hangs from an i...

A pendulum of length `1 m` hangs from an inclined wall. Suppose that this pendulum is released at an initial angle of `10^(@)` and it bounces off the wall elastically when it reaches an angle of `-5^(@)` as shown in the figure. Take `g = pi^(2) m//s^(2)`. The period of this pendulum is (in second)

Promotional Banner

Similar Questions

Explore conceptually related problems

The l - T^(2) graph of a simple pendulum is an shown in the figure. The time period of the pendulum of length 0.5 mm is

The acceleration due to gravity at a place is pi^(2)m//s^(2) . Then, the time period of a simple pendulum of length 1 m is

The acceleration due to gravity at a place is pi^(2)m//s^(2) . Then, the time period of a simple pendulum of length 1 m is

Find the length of seconds pendulum at a place where g = pi^(2) m//s^(2) .

Find the length of seconds pendulum at a place where g = pi^(2) m//s^(2) .

Find the length of seconds pendulum at a place where g = pi^(2) m//s^(2) .

Find the length of seconds pendulum at a place where g =4 pi^(2) m//s^(2) .

A pendulum of length 10 cm is hanged by wall making an angle 3^(@) with vertical. It is swinged to position B. Time period of pendulum will be

A simple pendulum of length 1/2m has initial speed 3m/s when pendulum mass is at lowermost point. What will be the speed pf pendulum mass, when the string of pendulum makes an angle of 60^0 with vertical.

A simple pendulum is released from A as shown. If m and 1 represent the mass of the bob and length of the pendulum, the gain kinetic energy at B is