Home
Class 11
MATHS
|x-1| +|x-2|+|x-3|=k...

`|x-1| +|x-2|+|x-3|=k `

Promotional Banner

Similar Questions

Explore conceptually related problems

Given that |x+1|+|x+2|+|x+3)|=k where k is real number then: value of k for which equation has one solution:

When (x-1) (x-2) (x-3)+ 2x+k is divided by (x-1),the remainder is 10. Then find out the remainder when it is divided by (x-2).

If lim_(xto-oo)((3x^(4)+2x^(2)).sin(1/x)+|x|^(3)+5)/(|x|^(3)+|x^(2)|+|x|+1)=k then |k/2| is …….

If lim_(xto-oo)((3x^(4)+2x^(2)).sin(1/x)+|x|^(3)+5)/(|x|^(3)+|x^(2)|+|x|+1)=k then |k/2| is …….

If lim_(xto-oo)((3x^(4)+2x^(2)).sin(1/x)+|x|^(3)+5)/(|x|^(3)+|x^(2)|+|x|+1)=k then |k/2| is …….

If x(x-1)(x-2)(x-3) + 1 = k^(2) then which one of the following is a possible expression for k ?

The largest integral value of k for which the equation (x-1)(x-2)(x-3)(x-4)+k=0 has real roots is a root of the equation (a) x^(2)-3x+2=0 (b) x^(2)+3x+2=0 (c) x^(2)-7x+12=0(d)x^(2)+7x+12=0

Let n and k be positive integers such that n ge K(K + 1)/2 . Find the number of solutions ( x_(1) , x_(2) , x_(3),………., x_(k) ) x_(1) ge 1, x_(2) ge 2, ……….. X_(k) ge k , all integers satisfying the condition x_(1) + x_(2) + x_(3) + ………. X_(k) = n .

Let n and k be positive integers such that n ge K(K + 1)/2 . Find the number of solutions ( x_(1) , x_(2) , x_(3),………., x_(k) ) x_(1) ge 1, x_(2) ge 2, ……….. X_(k) ge k , all integers satisfying the condition x_(1) + x_(2) + x_(3) + ………. X_(k) = n .