Home
Class 11
MATHS
" If "a^(x)=b^(y)=c^(2)=d^(x)" ,then "lo...

" If "a^(x)=b^(y)=c^(2)=d^(x)" ,then "log_(x)(bcd)" equals to "

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(x)=b^(y)=c^(z)=d^(w) then log_(a)(bcd)=

If a^(x) = b^(y) = c^(z) = d^(w)," show that " log_(a) (bcd) = x (1/y+1/z+1/w) .

If a^(x) = b^(y) = c^(z) = d^(w)," show that " log_(a) (bcd) = x (1/y+1/z+1/w) .

If a^(x) = b^(y) = c^(z) = d^(w)," show that " log_(a) (bcd) = x (1/y+1/z+1/w) .

If a^x=b^y=c^z=d^w then log_a(bcd)=

If x,y,z are in G.P.and a^(x)=b^(y)=c^(z), then (a) log ba=log_(a)c(b)log_(c)b=log_(a)c(c)log_(b)a=log_(c)b(d) none of these

If x=log_(k)b=log_(b)c=(1)/(2)log_(c)d, then log_(k)d is equal to

If x=log_(k)b=log_(b)c=(1)/(2)log_(c)d, then log_(k)d is equal to 6x(b)(x^(3))/(2)(c)2x^(3)(d)2x^(8)