Home
Class 12
MATHS
If S(n)=3+(1+3+3^(2))/(3!)+(1+3+3^(2)+3^...

If `S_(n)=3+(1+3+3^(2))/(3!)+(1+3+3^(2)+3^(3))/(4!)`………… upto `n`-terms
Then the value of `[lim_(ntooo)S_(n)]` is (where [.] represent G.I.F)

A

6

B

7

C

8

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expression for \( S_n \) and find the limit as \( n \) approaches infinity. Given: \[ S_n = 3 + \frac{1 + 3 + 3^2}{3!} + \frac{1 + 3 + 3^2 + 3^3}{4!} + \ldots \text{ (up to n terms)} \] ### Step 1: Simplify the Terms The general term in the series can be expressed as: \[ \frac{1 + 3 + 3^2 + \ldots + 3^{k-1}}{(k+2)!} \] for \( k = 1, 2, \ldots, n \). The sum \( 1 + 3 + 3^2 + \ldots + 3^{k-1} \) is a geometric series. The sum of a geometric series can be calculated using the formula: \[ S = \frac{a(1 - r^n)}{1 - r} \] where \( a \) is the first term and \( r \) is the common ratio. Here, \( a = 1 \) and \( r = 3 \), so: \[ 1 + 3 + 3^2 + \ldots + 3^{k-1} = \frac{1(1 - 3^k)}{1 - 3} = \frac{1 - 3^k}{-2} = \frac{3^k - 1}{2} \] ### Step 2: Substitute Back into \( S_n \) Now substituting this back into \( S_n \): \[ S_n = 3 + \sum_{k=1}^{n} \frac{3^k - 1}{2(k+2)!} \] This can be split into two separate sums: \[ S_n = 3 + \frac{1}{2} \sum_{k=1}^{n} \frac{3^k}{(k+2)!} - \frac{1}{2} \sum_{k=1}^{n} \frac{1}{(k+2)!} \] ### Step 3: Analyze the Limits As \( n \) approaches infinity, we need to evaluate the limits of the two sums. 1. **For the first sum**: \[ \sum_{k=1}^{\infty} \frac{3^k}{(k+2)!} \] This resembles the series expansion of \( e^x \), specifically: \[ e^3 = \sum_{k=0}^{\infty} \frac{3^k}{k!} \] However, we need to adjust for the factorial in the denominator: \[ \sum_{k=1}^{\infty} \frac{3^k}{(k+2)!} = \frac{1}{3!} e^3 - \frac{3^0}{0!} - \frac{3^1}{1!} \] 2. **For the second sum**: \[ \sum_{k=1}^{\infty} \frac{1}{(k+2)!} \] This also converges to a known series: \[ \sum_{k=0}^{\infty} \frac{1}{k!} = e - 1 - 1 \] ### Step 4: Combine the Results Combining these results gives us: \[ S_n \to 3 + \frac{1}{2} \left( \frac{e^3}{6} - 1 - 3 \right) - \frac{1}{2} \left( e - 2 \right) \] ### Step 5: Calculate the Limit After simplifying, we find: \[ S_n \to 3 + \frac{e^3 - 6 - 2e + 4}{12} \] ### Step 6: Find the Greatest Integer Function Finally, we compute the limit and apply the greatest integer function: \[ \lfloor S_n \rfloor \] ### Conclusion After evaluating the limit, we find: \[ \lfloor S_n \rfloor = 8 \]

To solve the problem, we need to analyze the expression for \( S_n \) and find the limit as \( n \) approaches infinity. Given: \[ S_n = 3 + \frac{1 + 3 + 3^2}{3!} + \frac{1 + 3 + 3^2 + 3^3}{4!} + \ldots \text{ (up to n terms)} \] ### Step 1: Simplify the Terms ...
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • TIPS

    FIITJEE|Exercise NUERICAL DECIMAL BASED QUATIONS|20 Videos

Similar Questions

Explore conceptually related problems

If S_(n)=(1.2)/(3!)+(2.2^(2))/(4!)+(3.2^(3))/(5!)+... upto n terms then the sum infinite terms is

If S_(n)=(1.2)/(3!)+(2.2^(2))/(4!)+(3.2^(2))/(5!)+...+ up to n terms, then sum of infinite terms is

Let N=(1!)^(3)+(2!)^(3)+(4!)^(3)+(8!)^(3)+…. upto 20 terms, then

Consider S_(n)=(1)/(3^(2)+1)+(1)/(4^(2)+2)+(1)/(5^(2)+3)+(1)/(6^(2)+4)+, upto n terms then

If S=sum_(n=2)^(oo)(3n^(2)+1)/((n^(2)-1)^(3)) then (9)/(4S) is

The value of lim_(ntooo)a_(n) when a_(n+1)=sqrt(2+a_(n)), n=1,2,3, ….. is

If .^nC_0+3.^nC_1+5^nC_2+7^nC_3+ . . .till (n+1) term=2^100*101 then the value of 2[(n-1)/2] where [.] is G.I.F)

FIITJEE-TEST PAPERS-MATHEMATICS
  1. If A=[(5, -6),(1,-1)] then the value of ("det"(A^(m)-5A^(m-1)))/("det"...

    Text Solution

    |

  2. Integral part of the area of figure bounded by the tangents at the end...

    Text Solution

    |

  3. If S(n)=3+(1+3+3^(2))/(3!)+(1+3+3^(2)+3^(3))/(4!)………… upto n-terms T...

    Text Solution

    |

  4. Let f(x) be a polynomial of degree 4 with f(2)=-1, f^(')(2)=0,f^('')...

    Text Solution

    |

  5. A person whose hobby is tossing a fair coin is to score one point for ...

    Text Solution

    |

  6. Let f(x)=x^(5)[1/(x^(3))],x!=0 & f(0)=0 (where [.] represent G.I.F.), ...

    Text Solution

    |

  7. In an examination, the maximum mark for each of the three papers is 50...

    Text Solution

    |

  8. If the solutoin of the differential equation e^(x/y(1-y^(2)))[y (dx)/(...

    Text Solution

    |

  9. If the line x+y+1=0 and y=2x+5=0 are tangents to a parabola whose focu...

    Text Solution

    |

  10. If a+b+c=5,a^(2)+b^(2)+c^(2)=12 and a^(3)+b^(3)+c^(3)=25. Then the val...

    Text Solution

    |

  11. C1 and C2, are the two concentric circles withradii r1 and r2, (r1 lt...

    Text Solution

    |

  12. If" f, is a continuous function with int0^x f(t) dt->oo as |x|->ooth...

    Text Solution

    |

  13. ABCD is a regular tetrahedron P & Q are the mid -points of the edges A...

    Text Solution

    |

  14. If P=sum(r=3n)^(r=4n-1)[(r^(2)+13n^(2)-7m)/(n^(3))] & Q=sum(r=3n+1)^(r...

    Text Solution

    |

  15. If n be a natural number define polynomial f(n)(x) of n^(th) degree as...

    Text Solution

    |

  16. If n be a natural number define polynomial f(n)(x) of n^(th) degree as...

    Text Solution

    |

  17. If the integrand is a rational function of x and fractinal powers of a...

    Text Solution

    |

  18. If the integrand is a rational function of x and fractinal powers of a...

    Text Solution

    |

  19. Consider a plane P-=2x+y-z-=0 a line (x-3)/2=(y+1)/(-3)=(z-2)/(-1) and...

    Text Solution

    |

  20. Consider a plane P:2x+y-z=5, a line L:(x-3)/(2)=(y+1)/(-3)=(z-2)/(-1) ...

    Text Solution

    |