Home
Class 12
MATHS
If a+b+c=5,a^(2)+b^(2)+c^(2)=12 and a^(3...

If `a+b+c=5,a^(2)+b^(2)+c^(2)=12` and `a^(3)+b^(3)+c^(3)=25`. Then the value of `a^(4)+b^(4)+c^(4)` is

A

`251/6`

B

`253/6`

C

`255/6`

D

`257/6`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( a^4 + b^4 + c^4 \) given the equations: 1. \( a + b + c = 5 \) 2. \( a^2 + b^2 + c^2 = 12 \) 3. \( a^3 + b^3 + c^3 = 25 \) we can use the relationships between the sums of powers of \( a, b, c \). ### Step 1: Find \( ab + bc + ca \) We can use the identity: \[ a^2 + b^2 + c^2 = (a + b + c)^2 - 2(ab + bc + ca) \] Substituting the known values: \[ 12 = 5^2 - 2(ab + bc + ca) \] Calculating \( 5^2 \): \[ 12 = 25 - 2(ab + bc + ca) \] Rearranging gives: \[ 2(ab + bc + ca) = 25 - 12 = 13 \] Thus, \[ ab + bc + ca = \frac{13}{2} \] ### Step 2: Find \( abc \) Using the identity for the sum of cubes: \[ a^3 + b^3 + c^3 = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca) + 3abc \] Substituting the known values: \[ 25 = 5 \left( 12 - \frac{13}{2} \right) + 3abc \] Calculating \( 12 - \frac{13}{2} \): \[ 12 = \frac{24}{2} \Rightarrow 12 - \frac{13}{2} = \frac{24}{2} - \frac{13}{2} = \frac{11}{2} \] Substituting back: \[ 25 = 5 \cdot \frac{11}{2} + 3abc \] Calculating \( 5 \cdot \frac{11}{2} \): \[ 25 = \frac{55}{2} + 3abc \] Rearranging gives: \[ 3abc = 25 - \frac{55}{2} = \frac{50}{2} - \frac{55}{2} = -\frac{5}{2} \] Thus, \[ abc = -\frac{5}{6} \] ### Step 3: Find \( a^4 + b^4 + c^4 \) Using the identity: \[ a^4 + b^4 + c^4 = (a^2 + b^2 + c^2)^2 - 2(a^2b^2 + b^2c^2 + c^2a^2) \] We already have \( a^2 + b^2 + c^2 = 12 \), so: \[ (a^2 + b^2 + c^2)^2 = 12^2 = 144 \] Now we need to find \( a^2b^2 + b^2c^2 + c^2a^2 \). We can use: \[ a^2b^2 + b^2c^2 + c^2a^2 = (ab + bc + ca)^2 - 2abc(a + b + c) \] Substituting the known values: \[ = \left(\frac{13}{2}\right)^2 - 2\left(-\frac{5}{6}\right)(5) \] Calculating \( \left(\frac{13}{2}\right)^2 \): \[ = \frac{169}{4} \] Calculating \( -2 \cdot -\frac{5}{6} \cdot 5 \): \[ = \frac{10}{6} \cdot 5 = \frac{50}{6} = \frac{25}{3} \] Now we need a common denominator to combine \( \frac{169}{4} \) and \( \frac{25}{3} \): The common denominator of 4 and 3 is 12: \[ \frac{169}{4} = \frac{507}{12} \] \[ \frac{25}{3} = \frac{100}{12} \] Thus, \[ a^2b^2 + b^2c^2 + c^2a^2 = \frac{507}{12} + \frac{100}{12} = \frac{607}{12} \] ### Step 4: Substitute back to find \( a^4 + b^4 + c^4 \) Now substituting back into the equation for \( a^4 + b^4 + c^4 \): \[ a^4 + b^4 + c^4 = 144 - 2 \cdot \frac{607}{12} \] Calculating \( 2 \cdot \frac{607}{12} = \frac{1214}{12} \): Now we need to subtract: \[ a^4 + b^4 + c^4 = 144 - \frac{1214}{12} \] Converting 144 to have a denominator of 12: \[ 144 = \frac{1728}{12} \] Thus, \[ a^4 + b^4 + c^4 = \frac{1728 - 1214}{12} = \frac{514}{12} = \frac{257}{6} \] ### Final Answer The value of \( a^4 + b^4 + c^4 \) is \( \frac{257}{6} \). ---
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • TIPS

    FIITJEE|Exercise NUERICAL DECIMAL BASED QUATIONS|20 Videos

Similar Questions

Explore conceptually related problems

If a + b + c = 0 and a^(2) + b^(2) + c^(3) = 4, them find the value of a^(4) + b^(4) +c^(4) .

If a^(2) + b^(2) + c^(2) = 2(a-b-c)-3 , then the value of 4a - 3b + 5c is

FIITJEE-TEST PAPERS-MATHEMATICS
  1. If the solutoin of the differential equation e^(x/y(1-y^(2)))[y (dx)/(...

    Text Solution

    |

  2. If the line x+y+1=0 and y=2x+5=0 are tangents to a parabola whose focu...

    Text Solution

    |

  3. If a+b+c=5,a^(2)+b^(2)+c^(2)=12 and a^(3)+b^(3)+c^(3)=25. Then the val...

    Text Solution

    |

  4. C1 and C2, are the two concentric circles withradii r1 and r2, (r1 lt...

    Text Solution

    |

  5. If" f, is a continuous function with int0^x f(t) dt->oo as |x|->ooth...

    Text Solution

    |

  6. ABCD is a regular tetrahedron P & Q are the mid -points of the edges A...

    Text Solution

    |

  7. If P=sum(r=3n)^(r=4n-1)[(r^(2)+13n^(2)-7m)/(n^(3))] & Q=sum(r=3n+1)^(r...

    Text Solution

    |

  8. If n be a natural number define polynomial f(n)(x) of n^(th) degree as...

    Text Solution

    |

  9. If n be a natural number define polynomial f(n)(x) of n^(th) degree as...

    Text Solution

    |

  10. If the integrand is a rational function of x and fractinal powers of a...

    Text Solution

    |

  11. If the integrand is a rational function of x and fractinal powers of a...

    Text Solution

    |

  12. Consider a plane P-=2x+y-z-=0 a line (x-3)/2=(y+1)/(-3)=(z-2)/(-1) and...

    Text Solution

    |

  13. Consider a plane P:2x+y-z=5, a line L:(x-3)/(2)=(y+1)/(-3)=(z-2)/(-1) ...

    Text Solution

    |

  14. If the set of 'K' for which two distinct chords of the ellipse (x^(2))...

    Text Solution

    |

  15. If ax^(3)-cx+bge0AAxepsilonR^(+)-{0} where a,b,cepsilonR^(+). Then the...

    Text Solution

    |

  16. If x,y,z are positive real number, such that x+y+z=1, if the minimum v...

    Text Solution

    |

  17. Let A be a square matrix of order 3 satisfies A^(3)-6A^(2)+7A-8I=0 & B...

    Text Solution

    |

  18. If (9a)/(costheta)+(5b)/(sintheta)=56 and (9asintheta)/(cos^(2)theta)-...

    Text Solution

    |

  19. Let f(x)={(lim(nto oo) ((px)/n sum(r=1)^(n) ([r^(2)-e^(-x)+r-1])/(r(r+...

    Text Solution

    |

  20. Consider f(x)=4x^(4)-24x^(3)+31x^(2)+6x-8 be a polynomial function and...

    Text Solution

    |