Home
Class 12
MATHS
Consider vectors veca,vecb,vecc,vecp=(ve...

Consider vectors `veca,vecb,vecc,vecp=(vecb.vecc)veca-(vecc.veca)vecb,vecq=(veca.vecc)vecb-(veca.vecb)vecc,vecr=(vecb.veca)vecc-(vecb.vecc)veca`, then

A

`vecp.vecc=0`

B

`vecp,vecq,vecr` can form a triangle

C

`/_\A(veca)B(vecb)C(vecc)` and `/_\P(vecp)Q(vecq)R(vecr)` are similar

D

`vecp,vecq,vecr` are collinear

Text Solution

Verified by Experts

The correct Answer is:
A, B, C

`vecp+vecq+vecr=0`
So, `vecp, vecq, vecr` can form a triangle
`vecp.ecc=(vecb.vecc)(veca.vecc)-(vecc.veca)(vecb.vecc)=0`
`:.vecp_|_vecc`
`impliesvecq-\-veca` and `vecr_|_vecb`
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • TIPS

    FIITJEE|Exercise NUERICAL DECIMAL BASED QUATIONS|20 Videos

Similar Questions

Explore conceptually related problems

Statement 1: If V is the volume of a parallelopiped having three coterminous edges as veca, vecb , and vecc , then the volume of the parallelopiped having three coterminous edges as vec(alpha)=(veca.veca)veca+(veca.vecb)vecb+(veca.vecc)vecc vec(beta)=(veca.vecb)veca+(vecb.vecb)vecb+(vecb.vecc)vecc vec(gamma)=(veca.vecc)veca+(vecb.vecc)vecb+(vecc.vecc)vecc is V^(3) Statement 2: For any three vectors veca, vecb, vecc |(veca.veca, veca.vecb, veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc)|=[(veca,vecb, vecc)]^(3)

Show that [veca vecb vecc]\^2=|(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc)|

If vector veca,vecb,vecc are coplanar show that |(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc)|

If veca, vecb, vecc are three given non-coplanar vectors and any arbitrary vector vecr in space, where Delta_(1)=|{:(vecr.veca,vecb.veca,vecc.veca),(vecr.vecb,vecb.vecb,vecc.vecb),(vecr.vecc,vecb.vecc,vecc.vecc):}|,Delta_(2)=|{:(veca.veca,vecr.veca,vecc.veca),(veca.vecb,vecr.vecb,vecc.vecb),(veca.vecc,vecr.vec ,vecc.vecc):}| Delta_(3)=|{:(veca.veca,vecb.veca,vecr.veca),(veca.vecb,vecb.vecb,vecr.vecb),(veca.vecc,vecb.vecc,vecr.vecc):}|'Delta=|{:(veca.veca,vecb.veca,vecc.veca),(veca.vecb,vecb.vecb,vecc.vecb),(veca.vecc,vecb.vecc,vecc.vecc):}|, "then prove that " vecr=(Delta_(1))/Deltaveca+(Delta_(2))/Deltavecb+(Delta_(3))/Deltavecc

If V is the volume of the parallelopiped having three coterminous edges as veca,vecb and vecc , then the volume of the parallelopiped having three coterminous edges as vec(alpha)=(veca.veca)veca+(veca.vecb)vecb+(veca.vecc)vecc vec(beta)=(veca.vecb)veca+(vecb.vecb)vecb+(vecb.vecc)vecc vec(gamma)=(veca.vecc)veca+(vecb.vecc)vecb+(vecc.vecc)vecc is

Let veca,vecb,vecc be non coplanar vectors and vecp= (vecbxxvecc)/([veca vecb vecc]), vecq= (veccxxvecq)/([veca vecb vecc]), vecr= (vecaxxvecb)/([veca vecb vecc]) . What is the vaue of (veca-vecb-vecc).vecp(vecb-vecc-veca).vecq+(vecc-veca-vecb).vecr? (A) 0 (B) -3 (C) 3 (D) -9

If |{:(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(veca.vecc,vecb.vecc,veca.vecc)| where veca, vecb,vecc are coplanar then:

If V is the volume of the parallelepiped having three coterminous edges as veca,vecb and vecc , then the volume of the parallelepiped having three coterminous edges as vecalpha = (veca.veca)veca+(veca.vecb)vecb+(veca.vecc)vecc , vecbeta=(vecb.veca)veca+(vecb.vecb)+(vecb.vecc)vecc and veclambda=(vecc.veca)veca+(vecc.vecb)vecb+(vecc.vecc)vecc is

If veca,vecb,vecc be non coplanar vectors and vecp=(vecbxxvecc)/[veca vecb vecc], vecq=(veccxxveca)/[veca vecb vecc], vecr=(vecaxxvecb)/[veca vecb vecc] then (A) vecp.veca=1 (B) vecp.veca+vecq+vecb+vecr.vecc=3 (C) vecp.veca+vecq.vecb+vecr.vecc=0 (D) none of these

The vectors veca and vecb are not perpendicular and vecac and vecd are two vectors satisfying : vecbxxvecc=vecbxxvecd and veca.vecd=0. Then the vecd is equal to (A) vecc+(veca.vecc)/(veca.vecb)vecb (B) vecb+(vecb.vecc)/(veca.vecb)vecc (C) vecc-(veca.vecc)/(veca.vecb)vecb (D) vecb-(vecb.vecc)/(veca.vecb)vecc

FIITJEE-TEST PAPERS-MATHEMATICS
  1. Consider f as a twice differentiable function such that f(x)+f^('')(x)...

    Text Solution

    |

  2. Consider P,Q,R to be vertices with integral coordinates and (|PR|+|RQ|...

    Text Solution

    |

  3. Consider vectors veca,vecb,vecc,vecp=(vecb.vecc)veca-(vecc.veca)vecb,v...

    Text Solution

    |

  4. Consider an equation z^(197)=1(z is a complex number). If alpha, beta ...

    Text Solution

    |

  5. Let ABCD be a quadrilateral with /CBD=2/ADB, /ABD=2/CDB, AB=BC, then

    Text Solution

    |

  6. If f: (0, oo) ->(0, oo) for which there is a positive real number a ...

    Text Solution

    |

  7. A variables plane passes through the point (1,2,3) and meets the coord...

    Text Solution

    |

  8. Consider a,b,c,d,e,f,g,h to be eight distinct alphabets then the numbe...

    Text Solution

    |

  9. Consider a function f : R -> R; f(x^2 +yf(z)) = xf(x) + zf(y), AA x,y,...

    Text Solution

    |

  10. Consider a function f : R -> R; f(x^2 +yf(z)) = xf(x) + zf(y), AA x,y,...

    Text Solution

    |

  11. Let A0,A1,.......,A(n-1) be a n-sided polygon with vertices as 1,om...

    Text Solution

    |

  12. Let A0,A1,.......,A(n-1) be a n-sided polygon with vertices as 1,om...

    Text Solution

    |

  13. For continuous function f: [0, 1]-> R ; A =int0^1 (x^2* f(x))dx ; B=in...

    Text Solution

    |

  14. Let A be an nxxn matrix such that A+A^(')=O(nxxn) then |I+lamdaA^(2)|g...

    Text Solution

    |

  15. Consider a equation x^(3)-3x=sqrt(x+2) such that x is a real number th...

    Text Solution

    |

  16. Consider A and B as 2xx2 matrices with determinant equal to 1 then t...

    Text Solution

    |

  17. Consider an ellipse (x^(2))/25+(y^(2))/16=1 and ABCD be a quadrilatera...

    Text Solution

    |

  18. Consider a parabla y^(2)=8x. If PSQ is a focal chord of the parabola w...

    Text Solution

    |

  19. If alpha in(0,1) and f:R->R and lim(x->oo)f(x)=0,lim(x->oo)(f(x)-f(alp...

    Text Solution

    |

  20. Let f: [a, b] -> R be a function, continuous on [a, b] and twice diff...

    Text Solution

    |