Home
Class 12
MATHS
Let A0,A1,.......,A(n-1) be a n-sided ...

Let `A_0,A_1,.......,A_(n-1)` be a n-sided polygon with vertices as `1,omega,omega^2,.......,omega^(n-1)` Let `B_1, B_1,..... B_(n -1)` be another polygon with vertices `1 , 1 + omega, 1 +omega^2,........,1+omega^(n-1)[omega=cos((2pi )/n)+i sin n((2pi)/n)] ` for `n=4,(A rdot(A_0, A_1, A_2, A_3))/(A r*(B_0, B_1, , B_3))` is `lambda` then

A

`[lamda]gt3`

B

`(3lamda)/2 epsilon I^(+)`

C

`([lamda])/3 epsilon I^(+)`

D

`lamda` is irrational

Text Solution

Verified by Experts

The correct Answer is:
B

`Ar.(B_(0),B_(1),………B_(n-1))=n/4 cot ((pi)/n)`
`Ar(A_(0)A_(1).A_(n-1))=n/s "sin" (2pi)/n`
`:.(Ar.(A_(0)A_(1).A_(n)))/(Ar.(B_(0)B_(1)………B_(n)))=(n"sin" (pi)/n "cos" (pi)/n)/(n/4"cot" (pi)/n)=4"sin"^(2) (pi)/n`
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos
  • TIPS

    FIITJEE|Exercise NUERICAL DECIMAL BASED QUATIONS|20 Videos

Similar Questions

Explore conceptually related problems

Let A_(0),A_(1),......,A_(n-1) be a n-sided polygon with vertices as 1,omega,omega^(2),......,omega^(n-1) Let B_(1),B_(1),.....B_(n-1) be another polygon with vertices 1,1+omega,1+omega^(2),.........,1+omega^(n-1)[omega=cos((2 pi)/(n))+i sin n((2 pi)/(n))] for n=4,(ArA_(0),A_(1),A_(2),A_(3))/(Ar*(B_(0),B_(1),B_(3))) is lambda then

The value of (1+omega^(2)+2 omega)^(3n)-(1+omega+2 omega^(2))^(3n) is

If omega be a nth root of unity, then 1+omega+omega^2+…..+omega^(n-1) is (a)0(B) 1 (C) -1 (D) 2

if 1,omega,omega^(2),............omega^(n-1) are nth roots of unity,then (1-omega)(1-omega^(2))......(1-omega^(n-1)) equal to

If 1,omega,......,omega^(n-1) are the n^(th) roots of unity,then value of (1)/(2-omega)+(1)/(2-omega^(2))......+(1)/(2-omega^(n-1)) equals

If omega(!=1) is a cube root of unity,then the sum of the series S=1+2 omega+3 omega^(2)+....+3n omega^(3n-1) is

FIITJEE-TEST PAPERS-MATHEMATICS
  1. Consider a function f : R -> R; f(x^2 +yf(z)) = xf(x) + zf(y), AA x,y,...

    Text Solution

    |

  2. Consider a function f : R -> R; f(x^2 +yf(z)) = xf(x) + zf(y), AA x,y,...

    Text Solution

    |

  3. Let A0,A1,.......,A(n-1) be a n-sided polygon with vertices as 1,om...

    Text Solution

    |

  4. Let A0,A1,.......,A(n-1) be a n-sided polygon with vertices as 1,om...

    Text Solution

    |

  5. For continuous function f: [0, 1]-> R ; A =int0^1 (x^2* f(x))dx ; B=in...

    Text Solution

    |

  6. Let A be an nxxn matrix such that A+A^(')=O(nxxn) then |I+lamdaA^(2)|g...

    Text Solution

    |

  7. Consider a equation x^(3)-3x=sqrt(x+2) such that x is a real number th...

    Text Solution

    |

  8. Consider A and B as 2xx2 matrices with determinant equal to 1 then t...

    Text Solution

    |

  9. Consider an ellipse (x^(2))/25+(y^(2))/16=1 and ABCD be a quadrilatera...

    Text Solution

    |

  10. Consider a parabla y^(2)=8x. If PSQ is a focal chord of the parabola w...

    Text Solution

    |

  11. If alpha in(0,1) and f:R->R and lim(x->oo)f(x)=0,lim(x->oo)(f(x)-f(alp...

    Text Solution

    |

  12. Let f: [a, b] -> R be a function, continuous on [a, b] and twice diff...

    Text Solution

    |

  13. If f(x(1)-x(2)),f(x(1))f(x(2)) & f(x(1)+x(2)) are in A.P. for all x(1)...

    Text Solution

    |

  14. Consider a sequence {an} with a1 =(a(n-1)^2)/(a(n-2)) for all n ge 3 ...

    Text Solution

    |

  15. fn(x)=e^(f(n-1)(x)) for all n in Na n df0(x)=x ,t h e n d/(dx){fn(x)}...

    Text Solution

    |

  16. Let ABC be a triangle with incentre I. If P and Q are the feet of the ...

    Text Solution

    |

  17. Let hatu, hatv, hatw be three unit vectors such that hatu+hatv+hatw=ha...

    Text Solution

    |

  18. Consider the integral "l"(1)=int(1)^(e)(1+x)(x+Inx)^(100)dx. "l"(2)=in...

    Text Solution

    |

  19. The equation k+x^(3)e^(x+3)=0 has 2 distinct real roots & k is a prime...

    Text Solution

    |

  20. If the equation2^((2pi)/cos^(-1)x)-(a+1/2)2^((pi)/cos^(-1)x-a^2=0 has ...

    Text Solution

    |