Using transformation, let `((p)/(p+1)) = y implies p= ((y)/(1-y))` As,p is root of cubic so `y^(3)-5y^(2)+6y-3=0` Now, `y_(1), y_(2),y_(3)` are roots of above equation so ` ((p)/(p+1)+(q)/(q+1)+(r )/(r+1))=5` Also `Sigmay_(1)=5,Sigmay_(1)y_(2)=6, Sigmay_(1)y_(2)y_(3)=3` `therefore y_(1)^(3)+y_(2)^(3)+y_(3)^(3)-3y_(1)y _(2)y_(3)` `= Sigmay_(1)((Sigmay_(1))^(2)-3SigmaY_(1)y_(2))` `implies y_(1)^(3)+y_(2)^(3)+y_(3)^(3)-3(3)=5((5)^(2)-3(6))` `impliesy_(1)^(3)+y_(2)^(3)+y_(3)^(3)=44` ` therefore ((p)/(p+1))^(3)+((q)/(q+1))^(3)+((r)/(r+1))^(3)=44`
Topper's Solved these Questions
TEST PAPERS
ALLEN|Exercise part-2 Mathematics|18 Videos
TEST PAPERS
ALLEN|Exercise part-2 Mathematic|18 Videos
TEST PAPER
ALLEN|Exercise CHEMISTRY SECTION-II|8 Videos
VECTOR ALGEBRA
ALLEN|Exercise All Questions|1 Videos
Similar Questions
Explore conceptually related problems
Let a,b and c be three distinct real roots of the cubic x ^(3) +2x ^(2)-4x-4=0. If the equation x ^(3) +qx ^(2)+rx+le =0 has roots 1/a, 1/b and 1/c, then the vlaue of (q+r+s) is equal to :
If p, q, r are the roots of the equation x^3 -3x^2 + 3x = 0 , then the value of |[qr-p^2, r^2 , q^2],[r^2,pr-q^2,p^2],[q^2,p^2,pq-r^2]|=
If alpha,beta are roots of the equation (3x+2)^(2)+p(3x+2)+q=0 then roots of x^(2)+px+q=0 are
If -3,1,8 are the roots of px^(3)+qx^(2)+rx+s=0 then the roots of p(x-3)^(3)+q(x-3)^(2)+r(x-3)+s=0
If alpha,beta are the roots of the equation x^(2)+px-r=0 and (alpha)/(3),3 beta are the roots of the equation x^(2)+qx-r=0, then r equals (i)((3)/(8))(p-3q)(3p+q)(ii)((3)/(8))(3p-q)(3p+q)(iii)((3)/(64))(q-3p)(p-3p)(iv)((3)/(64))(p-q)(q-3p)
If the roots of the cubic equation x^(3) -9x^(2) +a=0 are in A.P., Then find one of roots and a
If alpha,beta are the roots of the equations x^(2)-2x+3=0 then find the numerical value of P and Q
If alpha,beta are the roots of the equation px^(2)-qx+r=0, then the equation whose roots are alpha^(2)+(r)/(p) and beta^(2)+(r)/(p) is (i) p^(3)x^(2)+pq^(2)x+r=0 (ii) px^(2)-qx+r=0 (iii) p^(3)x^(2)-pq^(2)x+q^(2)r=0 (iv) px^(2)+qx-r=0