Home
Class 12
MATHS
Let S be the set of 2xx2 matrices given ...

Let `S` be the set of `2xx2` matrices given by `S={A=[[a,b],[c,d]],"where" a,b,c,d,in I}`, such that `A^(T)=A^(-1)` Then

A

number of matrices in set s is equal to 6

B

number of matrices in set S such that `|A-I_(2)| ne 0` is equal to 3

C

symmetric matrices are more than skew -symmetric matrices in set S

D

all matrices in set S are singular

Text Solution

Verified by Experts

The correct Answer is:
B, C

As, `A A^(T)=I_(2)`
`implies [[a,b],[c,d]],[[a,c],[b,d]]=[[1,0],[0,1]]`
`impliesa=0,b=pm1,d=0,c=pm1`
therefore Total 8 matrices are possible They are
`[[1,0],[0,1]],[[1,0],[0,-1]],[[-1,0],[0,1]],[[-1,0],[0,-1]]`
`[[0,1],[1,0]],[[0,-1],[1,0]],[[0,1],[-1,0]],[[0,-1],[-1,0]]`
Also `|A-I_(2)|=|A-A A^(T)|=|A||I_(2)-A^(T)|`
`=|A||(I_(2)-A^(T))^(T)|=|A||I_(2)-A|`
`=|A||A-I_(2)|`
`implies|A|=1(As,|A-I_(2)|ne 0)`
except `A=1=[[1,0],[0,1]]`
where `|A|=1 but`
`| A-I_(2)|=0`
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    ALLEN|Exercise part-2 Mathematics|18 Videos
  • TEST PAPERS

    ALLEN|Exercise part-2 Mathematic|18 Videos
  • TEST PAPER

    ALLEN|Exercise CHEMISTRY SECTION-II|8 Videos
  • VECTOR ALGEBRA

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

The number of matrices A = [(a,b),(c,d)] ( where a,b,c,d in R ) such that A^(-1) = -A is :

The number of 2xx2 matrices A=[[a,bc,d]][[a,bc,d]]^(-1)=[[(1)/(a),(1)/(b)(1)/(c),(1)/(d)]],(a,b,c,d in R) is