Home
Class 12
MATHS
|x|-|x-2|=2...

|x|-|x-2|=2

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following: |x-2|=(x-2) , |x+2|=-x-3 , |x^2-x|=x^2-x , |x^2-x-2|=2+x-x^2

Solve the following: |x-2|=(x-2) |x+2|=-x-3 |x^2-x|=x^2-x |x^2-x-2|=2+x-x^2

If (x^(2)-|x|-2)/(2|x|-x^(2)-2) ge 2 , then

Solve the following : (i) |x-2|=(x-2) " (ii) " |x+3| = -x-3 (iii) |x^(2)-x|=x^(2)-x " (iv) " |x^(2)-x-2| =2+x-x^(2)

Solve the following : (i) |x-2|=(x-2) " (ii) " |x+3| = -x-3 (iii) |x^(2)-x|=x^(2)-x " (iv) " |x^(2)-x-2| =2+x-x^(2)

Solve the following : (i) |x-2|=(x-2) " (ii) " |x+3| = -x-3 (iii) |x^(2)-x|=x^(2)-x " (iv) " |x^(2)-x-2| =2+x-x^(2)

Solve the following : (i) |x-2|=(2-x) " (ii) " |x+3| = -x-3 (iii) |x^(2)-x|=x^(2)-x " (iv) " |x^(2)-x-2| =2+x-x^(2)

If (x^(2)-2|x|)(|2x|-2)-9((2|x|-2)/(x^(2)-2|x|)) le0 then