Home
Class 12
MATHS
Using properties of determinants. Prove ...

Using properties of determinants. Prove that `|(sinalpha,cosalpha,cos(alpha+delta)),(sinbeta,cosbeta,cos(beta+delta)),(singamma,cosgamma,cos(gamma+delta))|=0`

Text Solution

Verified by Experts

`L.H.S. = |[sin alpha, cos alpha, cos(alpha+delta)],[sin beta, cos beta, cos(beta+delta)],[sin gamma, cos gamma, cos(gamma+delta)]|`
`= |[sin alpha, cos alpha, cosalphacosdelta - sinalphasindelta],[sin beta, cos beta, cosbetacosdelta - sinbetasindelta],[sin gamma, cos gamma, cosgammacosdelta - singammasindelta]|`
Applying `C_3 ->C_3-cosdeltaC_2+sindeltaC_1`
`= |[sin alpha, cos alpha, 0],[sin beta, cos beta, 0],[sin gamma, cos gamma, 0]|`
If in a determinant, all elements in a row or column are `0`, then value of that determinant is `0`.
Here, `C_3` is `0`.
`:. |[sin alpha, cos alpha, 0],[sin beta, cos beta, 0],[sin gamma, cos gamma, 0]| = 0 = R.H.S.`
Promotional Banner

Similar Questions

Explore conceptually related problems

|(sin alpha, cosalpha,sin(alpha+delta)),(sinbeta, cos beta,sin(beta+delta)),(singamma,cosgamma,sin(gamma+delta))|=

Show that |[sinalpha, cosalpha, cos(alpha+delta)],[sinbeta, cosbeta, cos(beta+delta)],[singamma, cosgamma, cos(gamma+delta)]|=0

sin alpha, cos alpha, cos (alpha + delta) sin beta, cos beta, cos (beta + delta) sin gamma, cos gamma, cos (gamma + delta)] | = 0

Prove that det [[sin alpha, cos alpha, sin (alpha + delta) sin beta, cos beta, sin (beta + delta) sin gamma, cos gamma, sin (gamma + delta)]] = 0

Without expanding,show that the value of each of the determinants is zero: det[[sin alpha,cos alpha,cos(alpha+delta)sin beta,cos beta,cos(beta+delta)sin gamma,cos gamma,cos(gamma+delta)]]

Without expanding evaluate the determinant det[[sin alpha,cos alpha sin(alpha+delta)sin beta,cos beta,sin(beta+delta)sin gamma,cos gamma,sin(gamma+delta)]]

Without expanding evaluate the determinant |sin alpha cos alpha sin(alpha+delta)sin beta cos beta sin(beta+delta)sin gamma cos gamma sin(gamma+delta)|

If alpha,beta,gamma are real numbers,then determinant Delta=det[[sin^(2)alpha,cos2 alpha,cos^(2)alphasin^(2)beta,cos2 beta,cos^(2)betasin^(2)gamma,cos2 gamma,cos^(2)gamma]] equals

Prove that: |(sinalpha, cosalpha, 1),(sinbeta, cosbeta, 1),(singamma, cosgamma, 1)|=sin(alpha-beta)+sin(beta-gamma)+sin(gamma-alpha)

If Delta=|(sin alpha, cos alpha, sin alpha+cos beta),(sin beta, cos alpha, sin beta+cos beta),(sin gamma, cos alpha, sin gamma+cos beta)| then Delta equals