Home
Class 12
MATHS
f(x)= int0^1 |t-x|t dt...

`f(x)= int_0^1 |t-x|t dt`

Text Solution

Verified by Experts

`f(x) = int_0^1|t-x|t dt `
When, `x le t`, then,
`f(x) = int_0^1 (t-x)t dt = int_0^1 (t^2-xt) dt`
`f(x) = [t^3/3-(xt^2)/2]_0^1 = [(1/3-x/2) -0 +0] = (2-3x)/6`
When, `x gt t`, then,
`f(x) = int_0^1 (x-t)t dt = int_0^1 (xt-t^2) dt`
`f(x) = [(xt^2)/2-t^3/3]_0^1 = [(x/2-1/3) -0 +0] = (3x-2)/6`
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x+int_0^1 t(x+t) f(t)dt, then find the value of the definite integral int_0^1 f(x)dx.

If f(x)=x+int_0^1 t(x+t) f(t)dt, then find the value of the definite integral int_0^1 f(x)dx.

If f(x)=x+int_0^1 t(x+t) f(t)dt, then find the value of the definite integral int_0^1 f(x)dx.

Let function F be defined as f(x)= int_1^x e^t/t dt x > 0 then the value of the integral int_1^1 e^t/(t+a) dt where a > 0 is

Let f(x)=int_(0)^(1)|x-t|dt, then

If f(x)=x+int_0^1t(x+t)f(t) dt ,then the value of 23/2f(0) is equal to _________

If f(x)=x+int_0^1t(x+t)f(t) dt ,then the value of 23/2f(0) is equal to _________

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

Find the points of minima for f(x)=int_0^x t(t-1)(t-2)dt