Home
Class 11
MATHS
" 36."log x-(1)/(2)log(x-(1)/(2))=log(x+...

" 36."log x-(1)/(2)log(x-(1)/(2))=log(x+(1)/(2))-(1)/(2)log(x+(1)/(8))

Promotional Banner

Similar Questions

Explore conceptually related problems

2log x-log(x+1)-log(x-1)=

int (1)/(log x)-(1)/((log x)^(2))dx=

int[(1)/(log x)-(1)/((log x)^(2))]dx=

int(log(x+1)-log x)/(x(x+1))dx= (A) log(x-1)log x+(1)/(2)(log x-1)^(2)-(1)/(2)(log x)^(2)+c (B) (1)/(2)(log(x+1))^(2)+(1)/(2)(log x)^(2)-log(x+1)log x+c (C) -(1)/(2)(log(x+1)^(2))-(1)/(2)(log x)^(2)+log x*log(x+1)+c (D) [log(1+(1)/(x))]^(2)+c

log_(x)((a+b)/(2))=(1)/(2)(log a+log_(8)b)

log(x-1)+log(x-2)lt log(x+2)

Solve for x:|log^(2)(4-x)+log(4-x)*log(x+(1)/(2))-2log^(2)(x+(1)/(2))=

int((log x)^(2)-log x+1)/(((log x)^(2)+1)^((3)/(2)))dx

int(dx)/(x(x^(2)+1)) equal (A) log|x|-(1)/(2)log(x^(2)+1)+Clog|x|+(1)/(2)log(x^(2)+1)+Cquad -log|x|+(1)/(2)log(x^(2)+1)+Cquad (1)/(2)log|x|+log(x^(2)+1)+C

int(ln((x-1)/(x+1)))/(x^(2)-1)dx is equal to (a) (1)/(2)(ln((x-1)/(x+1)))^(2)+C(b)(1)/(2)(ln((x+1)/(x-1)))^(2)+C(c)(1)/(4)(ln((x-1)/(x+1)))^(2)+C(d)(1)/(4)(ln((x+1)/(x-1)))^(2)+C