Home
Class 12
MATHS
If A=[2 3 1 2] , verify that A^2-4A+I=O ...

If `A=[2 3 1 2]` , verify that `A^2-4A+I=O` , where `I=[1 0 0 1]` and `O=[0 0 0 0]` . Hence, find `A^(-1)` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[2312], verify that A^(2)-4A+I=O where I=[1001] and O=[0000]. Hence find A^(-1).

If A=[{:(2,-1),(-1,2):}] , verify A^(2)-4A+3I=0 , where I=[{:(1,0),(0,1):}] and O=[{:(0,0),(0,0):}] . Hence find A^(-1) .

If A = {:[(2,-1),(-1,2)] , verify A^2 - 4A + 3I = O , where 1 = {:[(1,0),(0,1)] and O = {:[(0,0),(0,0)] , Hence find A^-1

If A=[(3,2),(2,1)] verify that A^2-4A-I=0 . Hence find A^(-1)

Verify that the matrix equation A^(2)-4A+3I = 0 is satisfied by the matrix A={:[(2,-1),(-1,2)]," where " I={:[(1,0),(0,1)]and 0={:[(0,0),(0,0)]. Hence obtain A^(-1).

A = [[3,-5],[-4,2]] , verify that A^2 -5A-14I=0, hence find A^(-1)

If A={:((1,4),(2,3)), show that, A^(2)-4A-5I=0 where I={:((1,0),(0,1))and 0={:((0,0),(0,0)).

A = [ (0,0,1),(0,1,0),(1,0,0)] , verify that A^(2) = I

If A = [(0,0,0),(1,0,0),(0,1,0)] , verify that A^3 = O