Home
Class 11
MATHS
int(0)^(e^(ln tan^(2)x)sin^(-1)(cos x)dx...

int_(0)^(e^(ln tan^(2)x)sin^(-1)(cos x)dx)

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate :int_(0)^(1)e^(ln tan(-1)x)*sin^(-1)(cos x)*dx

Evaluate: int _(0) ^(1) e ^(ln tan ^(-1)) x. sin ^(-1) (cos x ) dx.

If |(int_(0)^((pi)/(2))(x cos x+1)e^(sin x)dx)/((int_(0)^(x))/(2)(x sin x-1)e^(cos x)dx)|, then [alpha]=

int(e^(ln tan^(-1)x))/(1+x^(2))dx

Show that : int_(0)^((pi)/(2))(sin^(2)x)/(sin x+cos x)dx=(1)/(sqrt(2))log(sqrt(2)+1)

If int_(0)^(1)(e^(x)dx)/(sqrt(1-x^(2)))=A then int_(0)^( pi)(e^(|sin x|)+e^(|cos x|))dx=

The value of the definite integral (1)/(pi)int_((pi)/(2))^((5 pi)/(2))(e^(tan^(-1)(sin x)))/(e^(tan^(-1)(sin x)+e^(tan^(-1)(cos x)))dx is )

The value of the integral int_(0)^((pi)/(2))(sin x)^(cos x)(cos x cot x-ln(sin x)^(sin x))dx

The value of int_(1)^(e)((tan^(-1)x)/(x)+(log x)/(1+x^(2)))dx is tan e(b)tan^(-1)e tan^(-1)((1)/(e))(d) none of these

int e^(log(1+tan^(2)x))dx=