Home
Class 12
MATHS
Using properties of determinants. Prove ...

Using properties of determinants. Prove that`|[1 ,1+p,1+p+q],[2, 3+2p,4+3p+2q],[3, 6+3p, 10+6p+3q]|=1`

Text Solution

AI Generated Solution

To prove that the determinant \[ D = \begin{vmatrix} 1 & 1+p & 1+p+q \\ 2 & 3+2p & 4+3p+2q \\ 3 & 6+3p & 10+6p+3q \end{vmatrix} ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Using properties of determinants,prove the det[[1+p,1+p+q2,3+2p,1+3p+2q3,6+3p,1+6p+3q]]=1

Show that det[[1,1+p,1+p+q2,3+2p,1+3p+2q3,6+3p,1+6p+3q]]=

Using the property of determinants and without expanding prove that abs([p,q,r],[p^2,q^2,r^2],[p^3,q^3,r^3])=pqr(p-q)(q-r)(r-p)

Show that: |11+p1+p+q23+2p1+3p+2q36+3p1+6p+3q|=1

The centroid of a triangle formed by (2,p),(q,7),(3,1) is (6,3) .then p+q is

{:(2x + 3y = 9),((p + q)x + (2p - q)y = 3(p + q+ 1)):}

The number of rational numbers (p)/(q), where p,q in[1,2,3,4,5,6} is