Home
Class 9
MATHS
If theta is an acute angle such that sec...

If `theta` is an acute angle such that `sec^2 theta=3`, then the value of `(tan^2 theta-cosec^2 theta)/(tan^2 theta+cosec^2 theta)` is

Text Solution

Verified by Experts

`sec^2 theta = 3`
`:. cos^2theta = 1/3 => cos theta = 1/sqrt3`
`:. sin^2theta = 1- cos^2theta = 1-1/3 = 2/3`
`:. tan^2theta = sin^2theta/cos^2theta = 2`
`cosec^2theta = 1/sin^2theta = 3/2`
`:. (tan^2theta-cosec^2theta)/(tan^2theta+cosec^2theta) =(2-3/2)/(2+3/2) = (1/2)/(7/2) = 1/7 `
Promotional Banner

Similar Questions

Explore conceptually related problems

If theta is an acute angle such that sec^2(theta)=3 then find the value of (tan^2(theta)-cosec^2(theta))/(tan^2(theta)+cosec^2(theta)) A)4/7 B)3/7 C)2/7 D)1/7

Write the value of (tan^(2)theta-sec^(2)theta)/(cot^(2)theta-"cosec"^(2)theta).

The value of (tan theta cosec theta)^(2) - (sin theta sec theta)^(2) is:

What is the value of (tan theta cosec theta)^(2)- (sin theta sec theta)^(2) .

What is the value of (tan theta "cosec" theta )^(2) -( sin theta sec theta) ^(2)

tan^(2)theta+cot^(2)theta+2=sec^(2)theta cosec^(2)theta

If "cosec "theta=2 , then the value of tan theta will be :

sec^(2)theta+csc^(2)theta=(tan theta+cot theta)^(2)

If tan^2 theta = 1-e^2 then the value of sec theta + tan^3 theta cosec theta