Home
Class 12
MATHS
f(x)=|x-1| + 2 |x-3|-|x+2| is monotoni...

`f(x)=|x-1| + 2 |x-3|-|x+2|` is monotonically increasing at x = ?

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=(x-2)|x-3| is monotonically increasing in

f(x) = (x - 2) |x - 3| is monotonically increasing in

Function f(x)=|x|-|x-1| is monotonically increasing when

If f(x)= kx-sin x is monotonically increasing then

Function f(x)=|x|-|x-1| is monotonically increasing when (a) x 1 (c) x<1 (d) 0

Function f(x)=|x|-|x-1| is monotonically increasing when (a) x 1 (c) x<1 (d) 0 < x < 1

Function f(x)=|x|-|x-1| is monotonically increasing when (a) x 1 (c) x<1 (d) 0 < x < 1

Function f(x)=|x|-|x-1| is monotonically increasing when (a) x 1 (c) x<1 (d) x in (0,1)

In the interval (1,\ 2) , function f(x)=2|x-1|+3|x-2| is (a) monotonically increasing (b) monotonically decreasing (c) not monotonic (d) constant

In the interval (1,2), function f(x)=2|x-1|+3|x-2| is (a) monotonically increasing (b) monotonstant decreasing (c) not monotonic (d) constant