Home
Class 12
MATHS
Using properties of determinants. Prove ...

Using properties of determinants. Prove that`|(x, x^2, 1+p x^3),( y, y^2, 1+p y^3),(z, z^2, 1+p z^3)|=(1+p x y z)(x-y)(y-z)(z-x)`, where `p` is any scalar.

Text Solution

AI Generated Solution

To prove that \[ |(x, x^2, 1 + p x^3), (y, y^2, 1 + p y^3), (z, z^2, 1 + p z^3)| = (1 + pxyz)(x - y)(y - z)(z - x), \] where \( p \) is any scalar, we will use properties of determinants step by step. ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.4|5 Videos
  • DETERMINANTS

    NCERT|Exercise SOLVED EXAMPLES|34 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT|Exercise QUESTION|3 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos

Similar Questions

Explore conceptually related problems

Prove that [[x, x^2 , 1+px^3], [y, y^2, 1+py^3] ,[z, z^2, 1+pz^3]] = (1+pxyz)(x-y)(y-z)(z-x)

Using properties of determinants, prove the following: |[x,x^2,1+px^3],[y,y^2,1+py^3],[z,z^2,1+pz^3]|=(1+pxyz)(x-y)(y-z)(z-x)

For any scalar p prove that =|x^(2)1+px^(3)yy^(2)1+py^(3)zz^(2)1+pz^(3)|=(1+pxyz)(x-y)(y-z)(z-x)

Using properties of determinant prove that: |[1,x+y, x^2+y^2],[1, y+z, y^2+z^2],[1, z+x, z^2+x^2]|= (x-y)(y-z)(z-x)

Using properties of determinants, prove that |[a+x,y,z],[x,a+y,z],[x,y,a+z]|=a^2(a+x+y+z)

Using properties of determinants, prove that |[2y,y-z-x,2y],[2z,2z, z-x-y],[ x-y-z, 2x,2x]|=(x+y+z)^3

Use properties of determinants to evaluate : |{:(x+y,y+z,z+x),(z,x,y),(1,1,1):}|

If |{:(x,x^2,1+x^3),(y,y^2,1+y^3),(z, z^2,1+z^3):}|=0 then relation of x,y and z is

If |(x, x^2, x^3 +1), (y, y^2, y^3+1), (z, z^2, z^3+1)| = 0 and x ,y and z are not equal to any other, prove that, xyz = -1

NCERT-DETERMINANTS-MISCELLANEOUS EXERCISE
  1. Let A=[[1,sintheta,1],[-sintheta,1,sintheta],[-1,-sintheta,1]], where ...

    Text Solution

    |

  2. If x, y, z are non-zero real numbers, then the inverse of matrix A=[(...

    Text Solution

    |

  3. If a, b, c, are in A.P, then the determinant |(x+2,x+3,x+2a),( x+3,x+4...

    Text Solution

    |

  4. Solve the system of equations 2/x+3/y+(10)/z=4 4/x-6/y+5/z=1 6/x+9/y-(...

    Text Solution

    |

  5. Using properties of determinants. Prove that |(sinalpha,cosalpha,cos(a...

    Text Solution

    |

  6. Using properties of determinants. Prove that|[1 ,1+p,1+p+q],[2, 3+2p,4...

    Text Solution

    |

  7. Using properties of determinants. Prove that|[3a,-a+b,-a+c],[-b+a,3b,-...

    Text Solution

    |

  8. Using properties of determinants. Prove that|(x, x^2, 1+p x^3),( y, y^...

    Text Solution

    |

  9. Using properties of determinants. Prove that|(alpha,alpha^2,beta+gamma...

    Text Solution

    |

  10. Evaluate |[1,x, y],[1,x+y, y],[1,x,x+y]|

    Text Solution

    |

  11. Let A=[{:(1,-2,1),(-2,3,1),(1,1,5):}]. Verify that ltbtgt (i) [adjA]^...

    Text Solution

    |

  12. Evaluate |(x, y, x+y),( y, x+y, x),( x+y, x, y)|.

    Text Solution

    |

  13. Without expanding the determinant, prove that |(a,a^2,bc),(b,b^2,ca),(...

    Text Solution

    |

  14. Evaluate |(cosalphacosbeta,cosalphasinbeta,-sinalpha),(-sinbeta,cosbet...

    Text Solution

    |

  15. If a, b and c are real numbers, and Delta=|[b+c,c+a,a+b],[c+a,a+b,b+c]...

    Text Solution

    |

  16. Solve the equation |(x+a, x,x),(x,x+a, x),(x,x,x+a)|=0, a!= 0

    Text Solution

    |

  17. Prove that |[a^2,bc,ac+c^2],[a^2+ab,b^2,ac],[ab,b^2+bc,c^2]|=4a^2b^2c^...

    Text Solution

    |

  18. Prove that the determinant [(x,sintheta,costheta),(-sintheta,-x,1),(co...

    Text Solution

    |

  19. If A^(-1)=[(3,-1, 1),(-15, 6,-5),( 5,-2, 2)]and B=[(1 ,2,-2),(-1, 3, 0...

    Text Solution

    |