Home
Class 12
MATHS
If z1 = 8+4i , z2 = 6+4i and arg((z-z1)/...

If `z1 = 8+4i , z2 = 6+4i` and `arg((z-z1)/(z-z2)) = pi/4`, then 'z, satisfies

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_1 = 8 + 4i, z_2 = 6 + 4iand arg ((z-z_1) / (z-z_2)) = pi / 4, then 'z' satisfies 1) | z-7-4i | = 1 2) | z-7-5i | = sqrt (2) 3) | z-4i | = 8 4) | z-7i | = sqrt (18)

If z_(1)=8+4 i, z_(2)=6+4 i and arg ((z-z_(1))/(z-z_(2)))=(pi)/(4) then z satisfies

Let z_(1)=6+i&z_(2)=4-3i Let z be a a complex number such that arg((z-z_(1))/(z-z_(2)))=(pi)/(2) then z satisfies

If z=x +i y such that |z+1|=|z-1| and arg((z-1)/(z+1))=pi/4 , then find zdot

If z=x +i y such that |z+1|=|z-1| and arg((z-1)/(z+1))=pi/4 , then find zdot

If z=x +i y such that |z+1|=|z-1| and arg((z-1)/(z+1))=pi/4 , then find zdot

If z=x +i y such that |z+1|=|z-1| and arg((z-1)/(z+1))=pi/4 , then find zdot

If z_1 = 3 - 2i and z_2 = 6 + 4i , find (z_1)/(z_2) in the rectangular form.

If z_1a n dz_2 both satisfy z+ z =2|z-1| and a r g(z_1-z_2)=pi/4 , then find I m(z_1+z_2) .