Home
Class 11
MATHS
Let F(x)=int- 1^x sqrt(4+t^2)dt and G(x)...

Let `F(x)=int_- 1^x sqrt(4+t^2)dt` and `G(x)=int_x^1sqrt(4+t^2)dt` then compute the value of (FG)'(0) where dash denotes the derivative.

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_0^xf(t) dt=x+int_x^1 tf(t)dt, then the value of f(1)

If int_0^xf(t) dt=x+int_x^1 tf(t)dt, then the value of f(1)

If int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

If int_(0)^(x)f(t)dt=x+int_(x)^(1)f(t)dt ,then the value of f(1) is

If int_(0)^(x)f(t)dt=x+int_(x)^(1)tf(t)dt , then the value of f(1) is

If int_(0)^(x)f(t)dt=x+int_(x)^(1)tf(t)dt , then the value of f(1) is

If F(x)=int_(1)^(x) f(t) dt ,where f(t)=int_(1)^(t^(2))(sqrt(1+u^(4)))/(u) du , then the value of F''(2) equals to

If F(x)=int_(1)^(x) f(t) dt ,where f(t)=int_(1)^(t^(2))(sqrt(1+u^(4)))/(u) du , then the value of F''(2) equals to