Home
Class 11
MATHS
Let Pn=root(n)(((3n!)/(2n!))) (n=1, 2 ,3...

Let `P_n=root(n)(((3n!)/(2n!))) (n=1, 2 ,3.... )` then find `lim_(n->oo)(P_n)/n.`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(2^(3n))/(3^(2n))=

Let P_(n)=prod_(k=2)^(n)(1-(1)/((k+1)C_(2))). If lim_(n rarr oo)P_(n) can be expressed as lowest rational in the form (a)/(b), find the value of (a+b)

Evaluate the following (i) lim_(n to oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))....+(n-1)/(n^(2))) (ii) lim_(n to oo)((1)/(n+1)+(1)/(n+2)+....+(1)/(2n)) (iii) lim_(n to oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+....+(n)/(2n^(2))) (iv) lim_(n to oo)((1^(p)+2^(p)+.....+n^(p)))/(n^(p+1)),pgt0

Evaluate the following (i) lim_(n to oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))....+(n-1)/(n^(2))) (ii) lim_(n to oo)((1)/(n+1)+(1)/(n+2)+....+(1)/(2n)) (iii) lim_(n to oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+....+(n)/(2n^(2))) (iv) lim_(n to oo)((1^(p)+2^(p)+.....+n^(p)))/(n^(p+1)),pgt0

Evaluate the following (i) lim_(n to oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))....+(n-1)/(n^(2))) (ii) lim_(n to oo)((1)/(n+1)+(1)/(n+2)+....+(1)/(2n)) (iii) lim_(n to oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+....+(n)/(2n^(2))) (iv) lim_(n to oo)((1^(p)+2^(p)+.....+n^(p)))/(n^(p+1)),pgt0

If f(n)=(1)/(n){(n+1)(n+2)(n+3)...(n+n)}^(1//n) then lim_(n to oo)f(n) equals

Let a_1=1 , a_n=n(a_(n-1)+1) for n=2,3,... where P_n=(1+1/a_1)(1+1/a_2)(1+1/a_3)....(1+1/a_n) then lim_(nrarroo)P_n=

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

lim_(n rarr oo)(n^(2))/(1+2+3+...+n)

lim_(n rarr oo)(n^(2))/(1+2+3+...+n)