Home
Class 11
MATHS
If Un=int0^(pi/2)(sin^2n x)/(sin^2x)dx, ...

If `U_n=int_0^(pi/2)(sin^2n x)/(sin^2x)dx,` then show that `U_1,U_2,U_3.......U_n` constitute an AP. Hence or otherwise find the value of `U_n.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If U_(n) = int_0^(pi/4) tan^(n) x dx then u_(n)+u_(n-2) =

If u_(n)=int_(0)^((pi)/(2))x^(n)sin xdx then u_(10)+90u_(8) is equal to

If v_n=int_0^1x^n tan^-1xdx , show that: (n+1)u_n+(n-1)u_(n-2)=pi/2-1/n

If u_(n)=int(log x)^(n)dx, then u_(n)+nu_(n-1) is equal to :

If U_n=(sqrt(3)+1)^(2n)+(sqrt(3)-1)^(2n) , then prove that U_(n+1)=8U_n-4U_(n-1)dot

If U_n=(sqrt(3)+1)^(2n)+(sqrt(3)-1)^(2n) , then prove that U_(n+1)=8U_n-4U_(n-1)dot

If U_n=(sqrt(3)+1)^(2n)+(sqrt(3)-1)^(2n) , then prove that U_(n+1)=8U_n-4U_(n-1)dot