Home
Class 10
MATHS
[" If the roots of the equation "(a^(2)+...

[" If the roots of the equation "(a^(2)+b^(2))x^(2)-2b],[(a+c)x+(b^(2)+c^(2))=0" are equal,then : "],[[" (A) "2b=ac," (B) "b^(2)=ac],[" (C) "b=(2ac)/(a+c)," (D) "b=ac]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If the roots of the equation (a^2+b^2)x^2-2(a c+b d)x+(c^2+d^2)=0 are equal, prove that a/b=c/d

if the roots of (a^(2)+b^(2))x^(2)-2b(a+c)+(b^(2)+c^(2))=0 are equal then a,b,c are in

If the roots of the equation (a^2+b^2)x^2-2b(a+c)x+(b^2+c^2)=0 are equal, then (a) 2b=a+c (b) b^2=a c (c) b=(2a c)/(a+c) (d) b=a c

If the roots of the equation (a^2+b^2)x^2-2b(a+c)x+(b^2+c^2)=0 are equal, then 2b=a+c (b) b^2=a c (c) b=(2a c)/(a+c) (d) b=a c

The roots of the equation (b-c)x^(2)+(c-a)x+(a-b)=0

If the roots of the equation a(b-c)x^(2)+b(c-a)x+c(a-b)=0 are equal,show that 2/b=1/a+1/c.

If the roots of the equation : (b-c)x^(2) + (c-a) x + ( a-b) = 0 are equal, then a,b,c are in :

If the roots of the equations (b-c) x^(2) + (c-a) x+( a-b) =0 are equal , then prove that 2b=a+c