Home
Class 10
MATHS
2cos^(2)theta-cos40+sin^(4)theta=1...

2cos^(2)theta-cos40+sin^(4)theta=1

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(4)theta-sin^(4)theta=(2)/(13) , find cos^(2)theta-sin^(2)theta+1 .

Prove that (cos^(4)theta-sin^(4)theta)/(cos^(2)theta-sin^(2)theta)=1

If sin theta+sin^(2)theta=1 Prove that cos^(2)theta+cos^(4)theta=1

If sin theta+ sin^(2)theta=1 , then prove that cos^(2) theta+cos^(4) theta=1.

If sin theta + sin^(2) theta = 1 , then prove that cos^(2) theta + cos^(4)theta = 1.

If sin theta+sin^(2)theta=1, prove that cos^(2)theta+cos^(4)theta=1

sec^(2)theta-(sin^(2)theta-2sin^(4)theta)/(2cos^(4)theta-cos^(2)theta)=1

Evaluate the following determinants: (b) |(cos theta, -sin theta),(sin theta, cos theta)| = cos theta (cos theta) - sin theta(-sin theta) = cos^(2) theta + sin^(2) theta = 1

If sin theta+sin ^(2) theta+sin ^(3) theta=1 then cos ^(6) theta-4 cos ^(4) theta+8 cos ^(2) theta=

Prove that : sin^(4)theta + cos^(4)theta = 1 - 2 cos^(2) theta + 2 cos^(4)theta