Home
Class 12
MATHS
If alpha, beta, gamma the roots of the e...

If `alpha, beta, gamma` the roots of the equation `x^3-7x+7=0` then `1/alpha^4+1/beta^4+1/gamma^4=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are the roots of the equation x^3 + 4x +1=0 then (alpha+beta)^(-1)+(beta+gamma)^(-1)+(gamma+alpha)^(-1)=

If alpha,beta,gamma are the roots of the equation x^(3)+4x+1=0 then (alpha+beta)^(-1)+(beta+gamma)^(-1)+(gamma+alpha)^(-1)=

If alpha,beta,gamma are the roots of the equation x^3 + 4x +1=0 then (alpha+beta)^(-1)+(beta+gamma)^(-1)+(gamma+alpha)^(-1)=

If alpha, beta , gamma are the roots of the equation x^(3)+4x+1=0 , then (alpha+beta)^(-1)+(beta+gamma)^(-1)+(gamma+alpha)^(-1) is equal to

If alpha,beta,gamma are the roots of the equation 2x^(3)-5x^(2)+3x-1=0, then (1)/(alpha beta)+(1)/(beta gamma)+(1)/(gamma alpha) is

if alpha,beta,gamma are the roots of the equation x^(3)-x-1=0 then (1+alpha)/(1-alpha)+(1+beta)/(1-beta)+(1+gamma)/(1-gamma) is