Home
Class 11
MATHS
" If "f(0)=1,f(2)=3,f'(2)=5" and "f'(0)"...

" If "f(0)=1,f(2)=3,f'(2)=5" and "f'(0)" is finite,then "int_(0)^(1)xf''(2x)dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(0) = 1 , f(2) = 3, f'(2) = 5 and f'(0) is finite, then int_(0)^(1)x. f^''(2x) dx is equal to

If f(0)=1,f(2)=3,f'(2)=5 ,then find the value of I_(1)=int_(0)^(1)xf''(2x)dx

If f(0)=1,f(2)=3,f'(2)=5, then find the value of int_(0)^(1)xf''(2x)dx

If f(0)=1,f(2)=3,f'(2)=5 ,then the value of the definite integral int_(0)^(1)xf''(2x)dx is

If f(0)=1,f(2)=3,f^'(2)=5 ,then find the value of int_0^1xf^('')(2x)dx

If f(0)=1,f(2)=3,f^'(2)=5 ,then find the value of int_0^1xf^('')(2x)dx

If f(0)=1,f(2)=3,f^'(2)=5 ,then find the value of int_0^1xf^('')(2x)dx

If f(0)=0, f(3)=3 and f'(3)=4 , then the value of int_(0)^(1)xf'' (3x)dx is equal to

If f(0)=0, f(3)=3 and f'(3)=4 , then the value of int_(0)^(1)xf'' (3x)dx is equal to

If f(x)=f(2-x) then int_(0.5)^(1.5)xf(x)dx=