Home
Class 14
MATHS
[" Q2.If "y=log((x)/(a+bx))*" Prove that...

[" Q2.If "y=log((x)/(a+bx))*" Prove that "(d^(2)y)/(dx^(2))],[=(1)/(x)((a)/(a+bx))^(2)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If y= x log ((x)/(a + bx)) prove that (d^(2)y)/(dx^(2)) = (1)/(x) ((a)/(a+ bx))^(2)

"If "y= xlog ((x)/(a+bx))," then "x^(3)(d^(2)y)/(dx^(2))=

"If "y= xlog ((x)/(a+bx))," then "x^(3)(d^(2)y)/(dx^(2))=

"If "y= xlog ((x)/(a+bx))," then "x^(3)(d^(2)y)/(dx^(2))=

If y=x^(3)log((1)/(x)) , prove that (d^(2)y)/(dx^(2))-(2)/(x)(dy)/(dx)+3x=0 .

If y=xlog (x/(a+bx)) , prove that x^3(d^2y)/(dx^2)=(y-xdy/dx)^2 .

If y = log ((x)/(a+bx)) , then x^3 (d^2y)/(dx^2)=

If y=x log{(x)/((a+bx))], then show that x^(3)(d^(2)y)/(dx^(2))=(x(dy)/(dx)-y)^(2)

(a+bx)e^((y)/(x))=x, Prove that x^(3)(d^(2)y)/(dx^(2))=(x(dy)/(dx)-y)^(2)