Home
Class 12
MATHS
rArr tan^(-1)x=sin^(-1)((1)/(2))*" find ...

rArr tan^(-1)x=sin^(-1)((1)/(2))*" find the value of "x

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan(cos^(-1)x)=sin(cot^(-1)""(1)/2) , then find the value of x.

If tan(cos^(-1) x) = sin (cot^(-1)( (1)/(2))) , then find the value of x

If tan(cos^(-1) x) = sin (cot^(-1).(1)/(2)) , then find the value of x

If tan(cos^(-1) x) = sin (cot^(-1)(1/2)) , then find the value of x

If tan(cos^(-1) x) = sin (cot^(-1).(1)/(2)) , then find the value of x

If tan(cos^(-1) x) = sin (cot^(-1).(1)/(2)) , then find the value of x

If sin^(-1)((1)/(2))=tan^(-1)x, then find the value of x.

If sin^(-1)(2x)/(1+x^(2))=tan^(-1)(2x)/(1-x^(2)), then find the value of x.

Given that 0<=x<=(1)/(2), and A=tan(sin^(-1)((x)/(sqrt(2))+sqrt((1-x^(2))/(2)))-sin^(-1)x) .If B=tan(4tan^(-1)((1)/(5))-tan^(-1)((1)/(239))) ,then find the value of A " and " B

If lim_(n rarr oo)(1)/((sin^(-1)x)^(n)+1)=1, then find the value of x.