Home
Class 12
MATHS
Using properties of determinants. Prove ...

Using properties of determinants. Prove that`|(alpha,alpha^2,beta+gamma),(beta,beta^2,gamma+alpha),(gamma,gamma^2,alpha+beta)|=(beta-gamma)(gamma-alpha)(alpha-beta)(alpha+beta+gamma)`

Text Solution

AI Generated Solution

To prove that \[ \left| \begin{array}{ccc} \alpha & \alpha^2 & \beta + \gamma \\ \beta & \beta^2 & \gamma + \alpha \\ \gamma & \gamma^2 & \alpha + \beta ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.4|5 Videos
  • DETERMINANTS

    NCERT|Exercise SOLVED EXAMPLES|34 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT|Exercise QUESTION|3 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos

Similar Questions

Explore conceptually related problems

Using peoperties of determinants in questions 11 to 15, prove that : |{:(alpha,alpha^(2),beta+gamma),(beta,beta^(2),gamma+alpha),(gamma,gamma^(2),alpha+beta):}|=(beta-gamma)(gamma-alpha)(alpha-beta+gamma)

Prove that, gammaalpha ^ (2), beta ^ (2), gamma ^ (2) beta + alpha, gamma + alpha, alpha + beta] | = (beta-gamma) (gamma-alpha) (alpha-beta) ( alpha + beta + gamma)

Using properties of determinants, prove the following |(alpha,beta,gamma),(alpha^2,beta^2,gamma^2),(beta+gamma,gamma+alpha,alpha+beta)|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)

Show that |(1,alpha,alpha^3),(1,beta,beta^3),(1,gamma,gamma^3)|=(alpha-beta)(beta-gamma)(gamma-alpha)( alpha+beta+gamma)

Show that |[1,alpha,alpha^2],[1,beta,beta^2],[1,gamma,gamma^2]|=(alpha-beta)(beta-gamma)(gamma-alpha)

|[1,alpha,alpha^3],[1,beta,beta^3],[1,gamma,gamma^3]|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+ beta+gamma)

Prove that |[alpha,beta,gamma] ,[alpha^2,beta^2,gamma^2] , [beta+gamma, gamma+alpha, beta+alpha]| = (alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)

Prove that: | alpha beta gamma alpha^(2)beta^(2)gamma^(2)beta+gamma gamma+alpha alpha+beta|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)

Prove the following : |{:(alpha,alpha^(2),beta+gamma),(beta,beta^(2),gamma+alpha),(gamma,gamma^(2),alpha+beta):}|=|{:(alpha,beta, gamma),(alpha^(2),beta^(2),gamma^(2)),(beta+gamma,gamma+alpha, alpha+beta):}|=(beta-gamma)(gamma-alpha)(alpha-beta)(alpha+beta+gamma)

NCERT-DETERMINANTS-MISCELLANEOUS EXERCISE
  1. Let A=[[1,sintheta,1],[-sintheta,1,sintheta],[-1,-sintheta,1]], where ...

    Text Solution

    |

  2. If x, y, z are non-zero real numbers, then the inverse of matrix A=[(...

    Text Solution

    |

  3. If a, b, c, are in A.P, then the determinant |(x+2,x+3,x+2a),( x+3,x+4...

    Text Solution

    |

  4. Solve the system of equations 2/x+3/y+(10)/z=4 4/x-6/y+5/z=1 6/x+9/y-(...

    Text Solution

    |

  5. Using properties of determinants. Prove that |(sinalpha,cosalpha,cos(a...

    Text Solution

    |

  6. Using properties of determinants. Prove that|[1 ,1+p,1+p+q],[2, 3+2p,4...

    Text Solution

    |

  7. Using properties of determinants. Prove that|[3a,-a+b,-a+c],[-b+a,3b,-...

    Text Solution

    |

  8. Using properties of determinants. Prove that|(x, x^2, 1+p x^3),( y, y^...

    Text Solution

    |

  9. Using properties of determinants. Prove that|(alpha,alpha^2,beta+gamma...

    Text Solution

    |

  10. Evaluate |[1,x, y],[1,x+y, y],[1,x,x+y]|

    Text Solution

    |

  11. Let A=[{:(1,-2,1),(-2,3,1),(1,1,5):}]. Verify that ltbtgt (i) [adjA]^...

    Text Solution

    |

  12. Evaluate |(x, y, x+y),( y, x+y, x),( x+y, x, y)|.

    Text Solution

    |

  13. Without expanding the determinant, prove that |(a,a^2,bc),(b,b^2,ca),(...

    Text Solution

    |

  14. Evaluate |(cosalphacosbeta,cosalphasinbeta,-sinalpha),(-sinbeta,cosbet...

    Text Solution

    |

  15. If a, b and c are real numbers, and Delta=|[b+c,c+a,a+b],[c+a,a+b,b+c]...

    Text Solution

    |

  16. Solve the equation |(x+a, x,x),(x,x+a, x),(x,x,x+a)|=0, a!= 0

    Text Solution

    |

  17. Prove that |[a^2,bc,ac+c^2],[a^2+ab,b^2,ac],[ab,b^2+bc,c^2]|=4a^2b^2c^...

    Text Solution

    |

  18. Prove that the determinant [(x,sintheta,costheta),(-sintheta,-x,1),(co...

    Text Solution

    |

  19. If A^(-1)=[(3,-1, 1),(-15, 6,-5),( 5,-2, 2)]and B=[(1 ,2,-2),(-1, 3, 0...

    Text Solution

    |