Home
Class 11
MATHS
[" 15.Show the "(dy)/(dx)" is independen...

[" 15.Show the "(dy)/(dx)" is independent of "t" if "],[quad x=cos^(-1)(1)/(sqrt(t^(2)+1))" and "y=sin^(-1)(t)/(sqrt(t^(2)+1))]

Promotional Banner

Similar Questions

Explore conceptually related problems

Show the dy/dx is independent of t if. x = cos^(-1) frac 1(sqrt(t^2 + 1)) and y = sin^(-1) frac t(sqrt(t^2 +1))

If x = cos^(-1) (1/(sqrt(1+t^(2)))), y = sin^(-1) (t/(sqrt(1+t^(2)))) then dy/dx =

Find (dy)/(dx), when x=cos^(-1)(1)/(sqrt(1+t^(2))) and y=sin^(-1)(t)/(sqrt(1+t^(2))),t in R

Find (dy)/(dx), when x=(cos^(-1)1)/(sqrt(1+t^(2))) and y=(sin^(-1)t)/(sqrt(1+t^(2))),t in R

Find (dy)/(dx), when x=cos^(-1)1/(sqrt(1+t^2))"and"y=sin^(-1)1/(sqrt(1+t^2)),tR

Show that (dy)/(dx) is independent of t_ . cos x=sqrt((1)/(1+t^(2))) and siny=(2t)/(1+t^(2))

Differentiate cos^-1(1/(sqrt(1+t^2))) w.r.t sin^-1(t/(sqrt(1+t^2)))

If x=sin^(-1)(3t-4t^(3)) and y=cos^(-1)sqrt(1-t^(2)) then (dy)/(dx)=