Home
Class 11
MATHS
1+log(x)y=log(2)y...

1+log_(x)y=log_(2)y

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of |(1,log_(x) y,log_(x) z),(log_(y) x,1,log_(y) z),(log_(z) x,log_(z) y,1)| if x,y,z ne 1

If x, y and z be greater than 1, then the value of |(1,log_(x)y,log_(x)z),(log_(y)x,1,log_(y)z),(log_(z)x,log_(z)y,1)| is

If x , y and z be greater than 1, then the value of |{:(1, log_(x)y, log_(x) z),(log_(y)x , 1 ,log_(y)z),(log_(z)x , log_z y , 1 ):}| =

|(1,log_(x)y,log_(x)z),(log_(y)x,1,log_(y)z),(log_(z)x,log_(z)y,1)|=

The value of |(1,log_(x)y,log_(x)z),(log_(y)x,1,log_(y)z),(log_(z)x,lo_(z)y,1)|=

det[[log_(x)xyz,log_(x)y,log_(x)zlog_(y)xyz,1,log_(y)zlog_(z)xyz,log_(z)y,1]]=0

log_(2)(log_(2)(log_(3)x))=log_(2)(log_(2)(log_(2)y))=0 find (x+y)=?

If log_(2)(log_(2)(log_(3)x))=log_(2)(log_(3)(log_(2)y))=0 then the value of (x+y) is

If log_(y)x+log_(x)y=7, then the value of (log_(y)x)^(2)+(log_(x)y)^(2), is