Home
Class 12
MATHS
" Let "f(x)={[x sin((1)/(x))+sin((1)/(x^...

" Let "f(x)={[x sin((1)/(x))+sin((1)/(x^(2))),,x!=0],[0,x=0]" then "lim_(x rarr oo)f(x)" equals "

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = {(x sin(1/x)+sin(1/x^2),; x!=0), (0,;x=0):}, then lim_(x rarr oo)f(x) is equal to

Let f(x) = {{:(x (sin 1//x + sin (1//x^(2))),,x ne 0),(0,,x = 0):} Then lim_(x rarr oo) f(x) equals :

lim_(x rarr0)x sin((1)/(x^(2)))

Let (x)=|[cos x,2sin x,sin x],[x,x,x],[1,2x,x]|," then "lim_(x rarr0)(f(x))/(x^(2) is equal

Consider the function f(x)={(max(x,(1)/(x)))/(min(x,(1)/(x))),quad if x!=0 and 1,quad if x=0 then lim_(x rarr0){f(x)}+lim_(x rarr1){f(x)},lim_(x rarr1)[f(x)]=

if f(x)={((1)/(x))sin x,x!=0,0,x=0}f in d lim_(x rarr0)((1)/(x))sin x

If f(x) = [((sin [x])/([x]), [x] ne 0),(0, [x] = 0)] , then lim_(x rarr 0) f(x) is :

If f(x)= sqrt((x-sin x)/(x+cos^(2)x)) , then lim_(x rarr oo) f(x) is equal to a)1 b)2 c) (1)/(2) d)0

f(x)=e^x then lim_(x rarr 0) f(f(x))^(1/{f(x)} is

If f(x)=int((2sin x-sin2x)/(x^(3))dx);x!=0 then lim_(x rarr0)f'(x) is: (A) 0(B)oo(C)-1 (D) 1