Home
Class 12
MATHS
sin x=(2t)/(1+t^(2)),tan y=(2t)/(1-t^(2)...

sin x=(2t)/(1+t^(2)),tan y=(2t)/(1-t^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

sinx = (2t)/(1+t^(2)), tan y = (2t)/(1-t^(2))

If sinx = (2t)/(1+t^2), tan y = (2t)/(1-t^2) , find dy/dx

Find (dy)/(dx) when : tan y=(2t)/(1-t^(2)), sin x=(2t)/(1+t^(2))

If sin x=(2t)/(1+t^(2)) and cot y=(1-t^(2))/(2t) then the value of (d^(2)x)/(dy^(2))=

Find the derivatives of the following : x=(1-t^(2))/(1+t^(2)), y=(2t)/(1+t^(2))

If x=tan ((1)/(2) sin ^(-1)((2t)/( 1+t^(2))) +(1)/(2)cos ^(-1) ((1-t^(2))/( 1+t^(2)))), then y= (2t)/( 1-t^(2)), then (dy)/(dx)=

x=(1-t^(2))/(1+t^(2)), y=(2t)/(1+t^(2)) " then " (dy)/(dx) is