Home
Class 12
MATHS
If minR and mgt=2 then prove that |[1,1,...

If m`in`R and `mgt=2` then prove that `|[1,1,1] , [C(m,1), C(m+1,1), c(m+2,1)] , [C(m,2), C(m+1,2), C(m+2,2)]|`=1

Promotional Banner

Similar Questions

Explore conceptually related problems

If minR and mgt=2 then prove that |[1,1,1] , [C(m,1), C(m+1,1), c(m+2,1)] , [C(m,2), C(m+1,2), C(m+2,2)]|=1

,C(m,1),C(m,2),C(m,3)C(n,1),C(n,2),C(n,3)C(p,1),C(p,2),C(p,3)]|=

If m in N and m>=2, prove that: det[[1,1m_(C_(1)),m+1_(C_(1)),m+2_(C_(1))m_(C_(2)),m+1_(C_(2)),m+2_(C_(2))]]=1

If m in N and mgeq2 prove that: |1 1 1\ ^m C_1\ ^(m+1)C_1\ ^(m+2)C_1\ ^m C_2\ ^(m+1)C_2\ ^(m+2)C_2|=1 .

If m in N and m>=2 prove that: |111^(m)C_(1)^(m+1)C_(1)^(m+2)C_(1)^(m)C_(2)^(m+1)C_(2)^(m+2)C_(2)|=1

|{:(1,1,1),(m_(C1),m+1_(C1),m+2_(C1)),(m_(C2),m+1_(C2),m+2_(C2)):}|=

If m in N and mgeq2, prove that: |1 1 1m_(C_1)m+1_(C_1)m+2_(C_1)m_(C_2)m+1_(C_2)m+2_(C_2)|=1

The value of the determinant |(1,1,1),(.^(m)C_(1),.^(m +1)C_(1),.^(m+2)C_(1)),(.^(m)C_(2),.^(m +1)C_(2),.^(m+2)C_(2))| is equal to

The value of the determinant |(1,1,1),(.^(m)C_(1),.^(m +1)C_(1),.^(m+2)C_(1)),(.^(m)C_(2),.^(m +1)C_(2),.^(m+2)C_(2))| is equal to

The value of the determinant |{:(1,,1,,1),(.^(m)C_(1),,.^(m+1)C_(1),,.^(m+2)C_(1)),(.^(m)C_(2),,.^(m+1)C_(2),,.^(m+2)C_(2)):}| is equal to