Home
Class 11
MATHS
Prove that log ((sin(x+iy))/(sin(x-iy)))...

Prove that `log ((sin(x+iy))/(sin(x-iy))) = 2i tan^-1 ( cot x tan hy).`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (sin (x +y) )/( sin (x-y)) = (tan x + tan y)/( tan x - tan y).

Prove that (sin (x +y) )/( sin (x-y)) = (tan x + tan y)/( tan x - tan y).

Prove that (sin (x +y) )/( sin (x-y)) = (tan x + tan y)/( tan x - tan y).

Prove that (sin (x +y) )/( sin (x-y)) = (tan x + tan y)/( tan x - tan y).

Prove that ,,(sin(x+y))/(sin(x-y))=(tan x+tan y)/(tan x-tan y)

Prove that: (sin(x+y))/(sin(x-y))=(tan x+tan y)/(tan x-tan y)

Prove that : (sin x + sin y)/(sin x - sin y) = tan ((x+y)/2).cot ((x-y)/2)

Prove that: (i) ("sin"(x-y))/("sin"(x+y))=("tan"x-"tan"y)/("tan"x+"tan"y)

sin 2x (tan x + cot x) = ?

Prove that: (sin x+sin y)/(sin x-sin y)=tan((x+y)/(2))*cot((x-y)/(2))