Home
Class 12
MATHS
2*e^(sin^(-1)x)...

2*e^(sin^(-1)x)

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral inte^(3sin^(-1)x)((1)/(sqrt(1-x^(2)))+e^(3cos^(-1)x))dx is equal to (2e^(3sin^(-1)x))/lamda + xe^(3pi/2)+c where lamda=

Consider the function defined implicity by the equation y^(2)-2ye^(sin^(-1)x)+x^(2)-1+[x]+e^(2sin ^(-1)x)=0("where [x] denotes the greatest integer function"). The area of the region bounded by the curve and the line x=-1 is

int(e^(2sin^(-1)x))/(sqrt(1-x^2))=dx=

If f(x) = frac{sin^(-1)x}{sqrt (1-x^2)} , g(x)=e^(sin^(-1)x) , then int f(x)g(x) dx =........................ A) e^(sin^(-1)x) (sin^(-1)x-1) + c B) e^( sin^(-1)x) (1- sin^(-1)x) + c C) e^(sin^(-1)x) (sin^(-1)x+1) + c D) -e^(sin^(-1)x) (sin^(-1)x-1) + c

If f(x)=(sin^(-1)x)/(sqrt(1-x^(2))) and g(x)=e^(sin^(-1)x), then int f(x)g(x)dx is equal to

If f(x)=(sin^(-1)x)/(sqrt(1-x^2) and " " g(x)=e^(sin^(-1)x) , then find intf(x)g(x)dx