Home
Class 12
MATHS
If Delta=|[a(11),a(12),a(13)],[a(21),a(2...

If `Delta=|[a_(11),a_(12),a_(13)],[a_(21),a_(22),a_(23)],[a_(31),a_(32),a_(33)]|` and `A_(i j)` is cofactors of `a_(i j)`, then value of `Delta` is given by

A

`a_(11)A_(31)+a_(12)A_(32)+a_(13)A_(33)`

B

`a_(11)A_(11)+a_(12)A_(21)+a_(13)A_(31)`

C

`a_(21)A_(11) + a_(22)A_(12) + a_(23)A_(13)`

D

`a_(11)A_(11) + a_(21)A_(21) + a_(31)A_(31)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \(\Delta\) given by \[ \Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \] we will use the method of co-factors. ### Step 1: Expand the Determinant We can expand the determinant along the first row: \[ \Delta = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} \] ### Step 2: Compute the 2x2 Determinants Now, we will compute each of the 2x2 determinants: 1. For \(\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}\): \[ = a_{22}a_{33} - a_{23}a_{32} \] 2. For \(\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}\): \[ = a_{21}a_{33} - a_{23}a_{31} \] 3. For \(\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}\): \[ = a_{21}a_{32} - a_{22}a_{31} \] ### Step 3: Substitute Back into the Determinant Now, substituting these back into the expression for \(\Delta\): \[ \Delta = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31}) \] ### Step 4: Rearranging Terms Rearranging the terms gives us: \[ \Delta = a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} \] ### Step 5: Recognizing Cofactors Notice that each term corresponds to the cofactor of the respective elements \(a_{11}, a_{12}, a_{13}\). Thus, we can express \(\Delta\) in terms of the cofactors: \[ \Delta = C_{11} + C_{12} + C_{13} \] where \(C_{ij}\) are the cofactors of the elements \(a_{ij}\). ### Final Answer Thus, the value of \(\Delta\) is given by: \[ \Delta = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13} \]

To find the value of the determinant \(\Delta\) given by \[ \Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[{:(a_(11),a_(12),a_(13)),(a_(21),a_(22),a_(23)),(a_(31),a_(32),a_(33)):}] and A_(ij) is co-factos of a_(ij) , then A is given by :

If A=[[a_(11), a_(12), a_(13)], [a_(21), a_(22), a_(23)], [a_(31), a_(32), a_(33)]] and A_(ij) denote the cofactor of element a_(ij) , then a_(11)A_(21)+a_(12)A_(22)+a_(13)A_(23)=

If A=[[a_(11), a_(12), a_(13)], [a_(21), a_(22), a_(23)], [a_(31), a_(32), a_(33)]] and a_(ij) denote the cofactor of element A_(ij) , then a_(11)A_(11)+a_(12)A_(12)+a_(13)A_(13)=

If Delta=|{:(a_(11),a_(12),a_(13)),(a_(21),a_(22),a_(23)),(a_(31),a_(32),a_(33)):}| and C_(ij)=(-1)^(i+j) M_(ij), "where " M_(ij) is a determinant obtained by deleting ith row and jth column then then |{:(C_(11),C_(12),C_(13)),(C_(21),C_(22),C_(23)),(C_(31),C_(32),C_(33)):}|=Delta^(2). Suppose a,b,c, in R, a+b+c gt 0, A =bc -a^(2),B =ca-b^(2) and c=ab-c^(2) and |{:(A,B,C),(B,C,A),(C,A,B):}| =49 then the valu of a^(3)+b^(3)+c^(3) -3abc is

If matrix A=[[1, 0, -1], [3, 4, 5], [0, 6, 7]] and its inverse is denoted by A^(-1)=[[a_(11), a_(12), a_(13)], [a_(21), a_(22), a_(23)], [a_(31), a_(32), a_(33)]], then the value of a_(23) =

Let A=[a_(ij)]_(3xx3) be a square matrix such that A A^(T)=4I, |A| lt 0 . If |(a_(11)+4,a_(12),a_(13)),(a_(21),a_(22)+4,a_(23)),(a_(31),a_(32),a_(33)+4)|=5lambda|A+I|. Then lambda is equal to

Let A=[a_(ij)]_(3xx3) be a matrix such that A.A^(T)=4I and a_(ij)+2c_(ij)=0 where c_(ij) is the cofactor of a_(ij) AAi & j , I is the unit matrix of order 3 and A^(T) is the transpose of the matrix A If |(a_(11)+4,a_(12), a_(3)),(a_(21),a_(22)+4,a_(24)),(a_(31),a_(32),a_(33)+4)|+5lamda|(a_(11)+1,a_(12),a_(13)),(a_(21),a_(22)+1,a_(23)),(a_(31),a_(32),a_(33)+1)|=0 then lamda=a/b where a and b are coprime positive integers then the value of a+b is______

Let A=[a_("ij")]_(3xx3) be a matrix such that A A^(T)=4I and a_("ij")+2c_("ij")=0 , where C_("ij") is the cofactor of a_("ij") and I is the unit matrix of order 3. |(a_(11)+4,a_(12),a_(13)),(a_(21),a_(22)+4,a_(23)),(a_(31),a_(32),a_(33)+4)|+5 lambda|(a_(11)+1,a_(12),a_(13)),(a_(21),a_(22)+1,a_(23)),(a_(31),a_(32),a_(33)+1)|=0 then the value of lambda is

If A=[(a_(11),a_(12)),(a_(21),a_(22))] , then minor of a_(11) (i. e., M_(11)) is