Home
Class 12
MATHS
If A(z1), B(z2). C(z3) are the vertices...

If `A(z_1), B(z_2). C(z_3)` are the vertices of an equilateral triangle ABC, then `arg((z_2+z_2-2z_1)/(z_3-z_2))=pi/4` Reason(R): If `/_B=alpha, then

Promotional Banner

Similar Questions

Explore conceptually related problems

If A(z_1), B(z_2), C(z_3) are the vertices of an equilateral triangle ABC, then arg((z_2+z_3-2z_1)/(z_3-z_2)) is equal to

If A(z_(1)),B(z_(2)), C(z_(3)) are the vertices of an equilateral triangle ABC, then arg (2z_(1)-z_(2)-z_(3))/(z_(3)_z_(2))=

If A(z_(1)),B(z_(2)), C(z_(3)) are the vertices of an equilateral triangle ABC, then arg (2z_(1)-z_(2)-z_(3))/(z_(3)_z_(2))=

If z_(1);z_(2) and z_(3) are the vertices of an equilateral triangle; then (1)/(z_(1)-z_(2))+(1)/(z_(2)-z_(3))+(1)/(z_(3)-z_(1))=0

If z_(1),z_(2),z_(3) are the vertices of an equilateral triangle,then value of (z_(2)-z_(3))^(2)+(z_(3)-z_(1))^(2)+(z_(1)-z_(2))^(2)

If z_(1),z_(2),z_(3) represent the vertices of an equilateral triangle such that |z_(1)|=|z_(2)|=|z_(3)| , then

If z_(1),z_(2) are vertices of an equilateral triangle with z_(0) its centroid, then z_(1)^(2)+z_(2)^(2)+z_(3)^(2)=

If z_1,z_2,z_3 are vertices of a triangle such that |z_1-z_2|=|z_1-z_3| then arg ((2z_1-z_2-z_3)/(z_3-z_2)) is :

If z_1,z_2,z_3 are vertices of a triangle such that |z_1-z_2|=|z_1-z_3| then arg ((2z_1-z_2-z_3)/(z_3-z_2)) is :