Home
Class 11
MATHS
Consider an A.P. a1, a2, an , and the ...

Consider an A.P. `a_1, a_2, a_n , ` and the G.P. `b_1,b_2, ,b_n , ` such that `a_1=b_1=1,a_9=b_9` and `sum_(r=1)^9a_r=369 ,` then `b_6=27` (b) `b_7=27` `b_8=81` (d) `b_9=81`

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider an A.P.a_(1),a_(2),...a_(n),... and the G.P.b_(1),b_(2),...,b_(n),... such that a_(1)=b_(1)=1,a_(9)=b_(9) and sum_(r=1)^(9)a_(r)=369 then b_(6)=27 (b) b_(7)=27b_(8)=81 (d) b_(9)=81

Consider an A.P. a_(1), a_(2), "……"a_(n), "……." and the G.P. b_(1),b_(2)"…..", b_(n),"….." such that a_(1) = b_(1)= 1, a_(9) = b_(9) and sum_(r=1)^(9) a_(r) = 369 , then

If the points (a_1, b_1),\ \ (a_2, b_2) and (a_1+a_2,\ b_1+b_2) are collinear, show that a_1b_2=a_2b_1 .

If the points (a_1, b_1),\ \ (a_2, b_2) and (a_1+a_2,\ b_1+b_2) are collinear, show that a_1b_2=a_2b_1 .

Let A={a_1,a_2,a_3,.....} and B={b_1,b_2,b_3,.....} are arithmetic sequences such that a_1=b_1!=0, a_2=2b_2 and sum_(i=1)^10 a_i=sum_(i=1)^15 b_j , If (a_2-a_1)/(b_2-b_1)=p/q where p and q are coprime then find the value of (p+q).

If the points ( a_1,b_1),(a_2,b_2) and (a_1+a_2,b_1+b_2) are collinear ,show that a_1b_2=a_2b_1 .

Consider an A.P. a_1, a_2, a_3,......... such that a_3+a_5+a_8=11 and a_4+a_2=-2, then the value of a_1+a_6+a_7 is (a). -8 (b). 5 (c). 7 (d). 9

Consider an A.P. a_1, a_2, a_3,......... such that a_3+a_5+a_8=11 and a_4+a_2=-2, then the value of a_1+a_6+a_7 is (a). -8 (b). 5 (c). 7 (d). 9

If the oints (a_1b_1),(a_2b_2) and (a_1-a_2,b_1-b_2) are collinear, then show that a_1b_2=a_2b_1