Home
Class 12
MATHS
Using Cofactors of elements of third col...

Using Cofactors of elements of third column, evaluate `Delta=|(1,x, y z),(1,y, z x),(1,z, x y)|`

Text Solution

AI Generated Solution

To evaluate the determinant \( \Delta = \begin{vmatrix} 1 & x & y z \\ 1 & y & z x \\ 1 & z & x y \end{vmatrix} \) using cofactors of elements of the third column, we will follow these steps: ### Step 1: Identify the matrix and the elements of the third column The given matrix is: \[ A = \begin{pmatrix} 1 & x & y z \\ 1 & y & z x \\ 1 & z & x y \end{pmatrix} \] We will use the elements of the third column \( (y z, z x, x y) \) for our cofactor expansion. ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT|Exercise MISCELLANEOUS EXERCISE|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT|Exercise QUESTION|3 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos

Similar Questions

Explore conceptually related problems

evaluate: |(a+x,y,z),(x,a+y,z),(x,y,a+z)|

Find the value of the "determinant" |{:(1,x,y+z),(1,y,z+x),(1,z,x+y):}|

evaluate: |(3x,-x+y,-x+z),(x-y,3y,z-y),(x-z,y-z,3z)|

Use properties of determinants to evaluate : |{:(x+y,y+z,z+x),(z,x,y),(1,1,1):}|

If Delta=|{:(,x,2y-z,-z),(,y,2x-z,-z),(,y,2y-z,2x-2y-z):}| ,then

Using properties of determinant prove that: |[1,x+y, x^2+y^2],[1, y+z, y^2+z^2],[1, z+x, z^2+x^2]|= (x-y)(y-z)(z-x)

Without expanding as far as possible, prove that |{:(1,1,1),(x,y,z),(x^(3),y^(3),z^(3)):}| = (x-y)(y-z)(z-x)(x+y+z) .

Using matrices, solve the following system of equations for x,y and z. x+y-z=-1 , 3x+y-2z=3 , x-y-z=-1

Find the coordinates of the centroid of a triangle having vertices P(x_1,y_1,z_1),Q(x_2,y_2,z_2) and R(x_3,y_3,z_3)