Home
Class 11
MATHS
tan^(-1)((1+x)/(1-x))=(pi)/(4)+tan^(-1)x...

tan^(-1)((1+x)/(1-x))=(pi)/(4)+tan^(-1)x,x=4

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)((1+x)/(1-x))=(pi)/(4)+tan^(-1)x,x<1

Solve the following equations tan^(-1)((1+x)/(1-x))=(pi)/(4)+tan^(-1)x

The relation tan^(-1)((1+x)/(1-x))=(pi)/(4)+tan^(-1)x holds true for all

The relation tan^(-1)((1+x)/(1-x))=(pi)/(4)+tan^(-1)x holds true for all

Prove that : tan^-1((1-x)/(1+x))= pi/4 - tan^-1 x

Prove that tan^-1(1+x)/(1-x) = pi/4 + tan^-1x, x < 1

tan^(-1)2x+tan^(-1)3x=(pi)/(4)

Prove that tan^(-1)((x)/(y))-tan^(-1)((x-y)/(x+y)) is (pi)/(4) and Not(-3 pi)/(4)

tan^(-1)(x-1)+tan^(-1)(x+1)=(pi)/(4)