Home
Class 9
MATHS
x^(3)=(3q+2)^(3)...

x^(3)=(3q+2)^(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

P=x^(3)-(1)/(x^(3)),Q=x-(1)/(x)x in(1,oo) then minimum value of (P)/(sqrt(3)Q^(2))

If p,q are the roots of ax^(2)-25x+c=0 , then p^(3)q^(3)+p^(2)q^(3)+p^(3)q^(2)=

write the degree of the polynomial p^(2)q^(3)+p^(3)q^(2)-p^(3)q^(3) .

If -3,1,8 are the roots of px^(3)+qx^(2)+rx+s=0 then the roots of p(x-3)^(3)+q(x-3)^(2)+r(x-3)+s=0

If P(x)=intx^(3)/(x^(3)-x^(2))dx, Q(x)=int1/(x^(3)-x^(2))dx " and " (P+Q)(2)=5/2, " then " P(3)+Q(3)=

If P(x)=intx^(3)/(x^(3)-x^(2))dx, Q(x)=int1/(x^(3)-x^(2))dx " and " (P+Q)(2)=5/2, then P(3)+Q(3)=

Which of the following is a factor of x^(3)+3px^(2)-3pqx-q^(3) ? ( where p and q are constants)

Determine the degrees and the number of terms of each of the following polynomials : (1+3x+3x^(2)+x^(3))^(q) , where q = 2

If p^(3)-q^(3)=(p-q)((p-q)^(2)-xpq), then find the value of x is (a) 1 (b) -3(c)3(d)-1