Home
Class 12
MATHS
int(x^(2)-1)/((x^(4)+3x^(2)+1)tan^(-1)(x...

int(x^(2)-1)/((x^(4)+3x^(2)+1)tan^(-1)(x+(1)/(x)))dx

Promotional Banner

Similar Questions

Explore conceptually related problems

If int((x^(2)-1)dx)/((x^(4)+3x^(2)+1)Tan^(-1)((x^(2)+1)/(x)))=klog|tan^(-1)""(x^(2)+1)/x|+c , then k is equal to

If int((x^(2)-1)dx)/((x^(4)+3x^(2)+1)Tan^(-1)((x^(2)+1)/(x)))=klog|tan^(-1)""(x^(2)+1)/x|+c , then k is equal to

int((x^(2)-1)dx)/((x^(4)+3x^(2)+1)Tan^(-1)((x^(2)+1)/(x)))=

int(x^(2)tan^(-1)x)/(1+x^(2))dx

The value of int_(0)^(4)[tan^(-1)((x)/(x^(2)+1))+tan^(-1)((x^(2)+1)/(x))]dx is

int ((x^2 -1)dx)/((x^4 + 3x^2 + 1) tan^-1((x^2 + 1)/x)) = k logabs(tan^-1((x^2 +1)/x)) + c

int_(-1)^(3)(Tan^(-1)""(x)/((x^(2)+1))+Tan^(-1)""(x^(2)+1)/(x))dx=

The value of int_(-4)^(4) [ tan^(-1)((x^(2))/( x^(4)+1)) +tan^(-1) ((x^(4)+1)/( x^(2))) ] dx is