Home
Class 11
MATHS
" 1."A=[[1,0],[-1,3]],R(1)harr R(2)...

" 1."A=[[1,0],[-1,3]],R_(1)harr R_(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Apply the given elementary transformation on each of the following matrices: A = [[1,0],[-1,3]], R_1 harr R_2 .

If A=[[1, 0], [-1, 3]] , then R_1 harr R_2 on A gives

If A=[[1,2,-1],[3,-2,5]],then R_1 harr R_2 and C_1 rarr C_1 + 2C_3 gives

[[1,-1],[2,3]] = [[1,0],[0,1]] A, R_2 rarr R_2 - 2R_1 gives

[(1,-1),(2,3)]=[(1,0),(0,1)] A,R_(2) rarr R_(2)-2R_(1) gives

If A= [{:(1," 2",-1),(3,-2," 5"):}] , then R_(1) harr R_(2) and C_(1) rarr C_(1) + 2C_(3) given

If A= [{:(1," 2",-1),(3,-2," 5"):}] , then R_(1) harr R_(2) and C_(1) rarr C_(1) + 2C_(3) given

Let for A=[(1,0,0),(2,1,0),(3,2,1)] , there be three row matrices R_(1), R_(2) and R_(3) , satifying the relations, R_(1)A=[(1,0,0)], R_(2)A=[(2,3,0)] and R_(3)A=[(2,3,1)] . If B is square matrix of order 3 with rows R_(1), R_(2) and R_(3) in order, then The value of det. (2A^(100) B^(3)-A^(99) B^(4)) is

Let for A=[(1,0,0),(2,1,0),(3,2,1)] , there be three row matrices R_(1), R_(2) and R_(3) , satifying the relations, R_(1)A=[(1,0,0)], R_(2)A=[(2,3,0)] and R_(3)A=[(2,3,1)] . If B is square matrix of order 3 with rows R_(1), R_(2) and R_(3) in order, then The value of det. (2A^(100) B^(3)-A^(99) B^(4)) is