Home
Class 12
MATHS
Without expanding, prove that Delta=|(x+...

Without expanding, prove that `Delta=|(x+y,y+z,z+x),(z,x,y),(1,1,1)|=0`

Text Solution

AI Generated Solution

To prove that the determinant \( \Delta = \begin{vmatrix} x+y & y+z & z+x \\ z & x & y \\ 1 & 1 & 1 \end{vmatrix} = 0 \) without expanding, we can use properties of determinants. ### Step 1: Identify the rows of the determinant The determinant is given as: \[ \Delta = \begin{vmatrix} x+y & y+z & z+x \\ z & x & y \\ 1 & 1 & 1 \end{vmatrix} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Without expanding prove that det[[x+y,z,1y+z,x,1z+x,y,1]]=0

Show without expanding at any stage that: [x+y,y+z,z+x],[z,x,y],[1,1,1]|=0

prove that: |(y+z,z,y),(z,z+x,x),(y,x,x+y)|=4xyz

Without expanding as far as possible, prove that |{:(1,1,1),(x,y,z),(x^(3),y^(3),z^(3)):}| = (x-y)(y-z)(z-x)(x+y+z) .

Without expanding, prove that : |{:(1+b,b+c,c+a),(p+q,q+r,r+p),(x+y,y+z,z+x),(x+y,y+z,z+x):}|=2|{:(a,b,c),(p,q,r),(x,y,z):}|

Without expanding, show that "Delta"=|(a-x)^2(a-y)^2(a-z)^2(b-x)^2(b-y)^2(b-z)^2(c-x)^2(c-y)^2(c-z)^2|=2(a-b)(b-c)(c-a)(x-y)(y-z)(z-x)

Without actual expansion, prove that the following determinants vanish : |{:(x+y,y+z,z+x),(z,x,y),(1,1,1):}|

Use properties of determinants to evaluate : |{:(x+y,y+z,z+x),(z,x,y),(1,1,1):}|

Using the property of determinants and without expanding in questions 1 to 7 prove that , |{:(x,a,x+a),(y,b,y+b),(z,c,z+c):}|=0

Prove that : |{:(1,x,x^(3)),(1,y,y^(3)),(1,z,z^(3)):}|