Home
Class 12
MATHS
Let f(x+y)=f(x)f(y) for all x and y . Su...

Let `f(x+y)=f(x)f(y)` for all `x` and `y` . Suppose `f(5)=2` and `f^(prime)(0)=3` , find `f^(prime)(5)` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x+y)=f(x)dotf(y) for all xa n dydot Suppose f(5)=2a n df^(prime)(0)=3. Find f^(prime)(5)dot

Let f(x+y)=f(x)dotf(y) for all xa n dydot Suppose f(5)=2a n df^(prime)(0)=3. Find f^(prime)(5)dot

Let f(x+y)=f(x)dotf(y) for all xa n dydot Suppose f(5)=2a n df^(prime)(0)=3. Find f^(prime)(5)dot

Let f(x+y)=f(x)dotf(y) for all xa n dydot Suppose f(5)=2a n df^(prime)(0)=3. Find f^(prime)(5)dot

Let f(x+y)=f(x)dotf(y) for all xa n dydot Suppose f(5)=2a n df^(prime)(0)=3. Find f^(prime)(5)dot

Let f(x+y)=f(x).f(y) for all x and y suppose f(5)=2 and f'(0)=3. Find f'(5) .

Let f(x+y) = f(x).f(y), forall, x, y . Suppose f(5) =2, f^(')(0) = 3 then f^(')(5) =