Home
Class 11
MATHS
Prove that: cos^2A+cos^2B-2cosA\ cos B c...

Prove that: `cos^2A+cos^2B-2cosA\ cos B cos\ (A+B)=sin^2(A+B)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: cos^(2)A+cos^(2)B-2cos A cos B cos(A+B)=sin^(2)(A+B)

Show that cos^(2) A + cos^(2)B - 2 cos A cos B cos (A + B) = sin^(2) (A + B)

Prove that : 2cosA cosB = cos (A + B) + cos (A-B) .

If A+B+C= 360^(@) ,prove that: 1-cos^(2)A-cos^(2)B-cos^(2)C+2cosA cos B cos C=0

If A+B+C=(3pi)/(2) , prove that cos ^(2)A+ cos ^(2) B- cos ^(2)C=-2 cos A cos B sin C.

If A+B+C=2pi , prove that : cos^2B+cos^2C-sin^2A-2cosA cosB cosC=0 .

If A+B+C=2pi , prove that : cos^2B+cos^2C-sin^2A-2cosA cosB cosC=0 .

Prove that : sin^2 A=cos^2 (A-B)+ cos^2 B-2 cos (A - B) cos A cos B .

Prove that sin^2 A cos^2 B+cos^2 A sin^2 B+cos^2 A cos^2 B+sin^2 A sin^2 B=1

Prove that: sin^2A=cos^2(A-B)+cos^2B-2cos(A-B)cosAcosBdot