Home
Class 12
MATHS
[" If "sin y=x sin(a+y)," prove that "(d...

[" If "sin y=x sin(a+y)," prove that "(dy)/(dx)=(sin^(2)(a+y))/(sin a)],[" Lf (ace "u)y=(sin x)x" find "dy]

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin y=x sin(a+y), prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If sin y = x sin(a+y), than prove that dy/dx=(sin^2(a+y))/sina

If sin y = x sin (a + y), then prove that (dy)/(dx) = (sin^(2) (a + y))/(sin a) .

If y=x sin(a+y), prove that (dy)/(dx)=(sin^(2)(a+y))/(sin(a+y)-y cos(a+y))

If y,=x sin(a+y), prove that (dy)/(dx),=(s in^(2)(a+y))/(sin(a+y)-y cos(a+y))

If y,=x sin(a+y), prove that (dy)/(dx),=(s in^(2)(a+y))/(sin(a+y)-y cos(a+y))

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(sin^(2)(a+y))/(sin a)

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If x sin(a+y)+sin a cos(a+y)=0, prove that (dy)/(dx)=(s in^(2)(a+y))/(sin a)

If y,=x sin y, prove that (dy)/(dx),=(sin y)/((1-x cos y))